Source code for wefe.metrics.RNSB

from typing import Any, Dict, Tuple, List, Union

import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.base import BaseEstimator
from scipy.stats import entropy
import logging

from ..query import Query
from ..word_embedding_model import PreprocessorArgs, WordEmbeddingModel
from .base_metric import BaseMetric

logging.basicConfig(level=logging.DEBUG)


[docs]class RNSB(BaseMetric): """A implementation of Relative Relative Negative Sentiment Bias (RNSB). References ---------- [1] Chris Sweeney and Maryam Najafian. A transparent framework for evaluating unintended demographic bias in word embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1662–1667, 2019. """ metric_template = ('n', 2) metric_name = 'Relative Negative Sentiment Bias' metric_short_name = 'RNSB' def _train_classifier( self, attribute_embeddings_dict: List[Dict[str, np.ndarray]], estimator: BaseEstimator = LogisticRegression, estimator_params: Dict[str, Any] = { 'solver': 'liblinear', 'max_iter': 10000, }, random_state: Union[int, None] = None, print_model_evaluation: bool = False) -> Tuple[BaseEstimator, float]: """Train the sentiment classifier from the provided attribute embeddings. Parameters ---------- attribute_embeddings_dict : dict[str, np.ndarray] A dict with the attributes keys and embeddings estimator : BaseEstimator, optional A scikit-learn classifier class that implements predict_proba function, by default None, estimator_params : dict, optional Parameters that will use the classifier, by default { 'solver': 'liblinear', 'max_iter': 10000, } random_state : Union[int, None], optional Seed that allows to make the execution of the query reproducible. by default None print_model_evaluation : bool, optional Indicates whether the classifier evaluation is printed after the training process is completed., by default False Returns ------- Tuple[BaseEstimator, float] The trained classifier and the accuracy obtained by the model. """ attribute_0_embeddings = np.array(list(attribute_embeddings_dict[0].values())) attribute_1_embeddings = np.array(list(attribute_embeddings_dict[1].values())) # generate the labels (1, -1) for each embedding positive_attribute_labels = np.ones(attribute_0_embeddings.shape[0]) negative_attribute_labels = -np.ones(attribute_1_embeddings.shape[0]) attributes_embeddings = np.concatenate( (attribute_0_embeddings, attribute_1_embeddings)) attributes_labels = np.concatenate( (negative_attribute_labels, positive_attribute_labels)) split = train_test_split(attributes_embeddings, attributes_labels, shuffle=True, random_state=random_state, test_size=0.33, stratify=attributes_labels) X_embeddings_train, X_embeddings_test, y_train, y_test = split num_train_negative_examples = np.count_nonzero((y_train == -1)) num_train_positive_examples = np.count_nonzero((y_train == 1)) # Check the number of train and test examples. if num_train_positive_examples == 1: raise Exception( 'After dividing the datset using stratified train_test_split, ' 'the attribute 0 has 0 training examples.') if num_train_negative_examples < 1: raise Exception( 'After dividing the datset using stratified train_test_split, ' 'the attribute 1 has 0 training examples.') # when random_state is not none, set it on classifier params. if random_state is not None: estimator_params['random_state'] = random_state estimator = estimator(**estimator_params) estimator.fit(X_embeddings_train, y_train) # evaluate y_pred = estimator.predict(X_embeddings_test) score = estimator.score(X_embeddings_test, y_test) if print_model_evaluation: print("Classification Report:\n{}".format( classification_report(y_test, y_pred, labels=estimator.classes_))) return estimator, score def _calc_rnsb(self, target_embeddings_dict: List[Dict[str, np.ndarray]], classifier: BaseEstimator) -> Tuple[np.float_, dict]: """Calculate the RNSB metric. Parameters ---------- target_embeddings_dict : Dict[str, np.ndarray] dict with the target words and their embeddings. classifier : BaseEstimator Trained scikit-learn classifier in the previous step. Returns ------- Tuple[np.float_, dict] return the calculated kl_divergence and negative_sentiment_probabilities in that order. """ # join the embeddings and the word sets in their respective arrays target_embeddings_sets = [ list(target_dict.values()) for target_dict in target_embeddings_dict ] target_words_sets = [ list(target_dict.keys()) for target_dict in target_embeddings_dict ] # get the probabilities associated with each target word vector probabilities = np.array([ classifier.predict_proba(target_embeddings) for target_embeddings in target_embeddings_sets ]) # extract only the negative sentiment probability for each word negative_probabilities = np.array( [probability[:, 1] for probability in probabilities]) # flatten the array negative_probabilities = np.concatenate([ negative_probabilities_arr.flatten() for negative_probabilities_arr in negative_probabilities ]) # normalization of the probabilities sum_of_negative_probabilities = np.sum(negative_probabilities) normalized_negative_probabilities = np.array(negative_probabilities / sum_of_negative_probabilities) # get the uniform dist uniform_dist = np.ones(normalized_negative_probabilities.shape[0] ) * 1 / normalized_negative_probabilities.shape[0] # calc the kl divergence kl_divergence = entropy(normalized_negative_probabilities, uniform_dist) flatten_target_words = [ item for sublist in target_words_sets for item in sublist ] # set the probabilities for each word in a dict. negative_sentiment_probabilities = { word: prob for word, prob in zip(flatten_target_words, negative_probabilities) } return kl_divergence, negative_sentiment_probabilities
[docs] def run_query(self, query: Query, word_embedding: WordEmbeddingModel, estimator: BaseEstimator = LogisticRegression, estimator_params: Dict[str, Any] = { 'solver': 'liblinear', 'max_iter': 10000, }, num_iterations: int = 1, random_state: Union[int, None] = None, print_model_evaluation: bool = False, lost_vocabulary_threshold: float = 0.2, preprocessor_args: PreprocessorArgs = { 'strip_accents': False, 'lowercase': False, 'preprocessor': None, }, secondary_preprocessor_args: PreprocessorArgs = None, warn_not_found_words: bool = False, *args: Any, **kwargs: Any) -> Dict[str, Any]: """Calculate the RNSB metric over the provided parameters. Note if you want to use with Bing Liu dataset, you have to pass the positive and negative words in the first and second place of attribute set array respectively. Scores on this metric vary with each run due to different instances of classifier training. For this reason, the robustness of these scores can be improved by repeating the test several times and returning the average of the scores obtained. This can be indicated in the num_iterations parameter. Parameters ---------- query : Query A Query object that contains the target and attribute word sets to be tested. word_embedding : WordEmbeddingModel A WordEmbeddingModel object that contains certain word embedding pretrained model. estimator : BaseEstimator, optional A scikit-learn classifier class that implements predict_proba function, by default None, estimator_params : dict, optional Parameters that will use the classifier, by default { 'solver': 'liblinear', 'max_iter': 10000, } num_iterations : int, optional When provided, it tells the metric to run the specified number of times and then average its results. This functionality is indicated to strengthen the results obtained, by default 1. random_state : Union[int, None], optional Seed that allows to make the execution of the query reproducible. Warning: if a random_state other than None is provided along with num_iterations, each iteration will split the dataset and train a classifier associated to the same seed, so the results of each iteration will always be the same , by default None. print_model_evaluation : bool, optional Indicates whether the classifier evaluation is printed after the training process is completed., by default False lost_vocabulary_threshold : float, optional Specifies the proportional limit of words that any set of the query is allowed to lose when transforming its words into embeddings. In the case that any set of the query loses proportionally more words than this limit, the result values will be np.nan, by default 0.2 preprocessor_args : PreprocessorArgs, optional Dictionary with the arguments that specify how the pre-processing of the words will be done, by default {} The possible arguments for the function are: - lowercase: bool. Indicates if the words are transformed to lowercase. - strip_accents: bool, {'ascii', 'unicode'}: Specifies if the accents of the words are eliminated. The stripping type can be specified. True uses 'unicode' by default. - preprocessor: Callable. It receives a function that operates on each word. In the case of specifying a function, it overrides the default preprocessor (i.e., the previous options stop working). , by default { 'strip_accents': False, 'lowercase': False, 'preprocessor': None, } secondary_preprocessor_args : PreprocessorArgs, optional Dictionary with the arguments that specify how the secondary pre-processing of the words will be done, by default None. Indicates that in case a word is not found in the model's vocabulary (using the default preprocessor or specified in preprocessor_args), the function performs a second search for that word using the preprocessor specified in this parameter. warn_not_found_words : bool, optional Specifies if the function will warn (in the logger) the words that were not found in the model's vocabulary , by default False. Returns ------- Dict[str, Any] A dictionary with the query name, the calculated kl-divergence, the negative probabilities for all tested target words and the normalized distribution of probabilities. """ # checks the types of the provided arguments (only the defaults). super().run_query(query, word_embedding, lost_vocabulary_threshold, preprocessor_args, secondary_preprocessor_args, warn_not_found_words, *args, **kwargs) # transforming query words into embeddings embeddings = word_embedding.get_embeddings_from_query( query=query, lost_vocabulary_threshold=lost_vocabulary_threshold, preprocessor_args=preprocessor_args, secondary_preprocessor_args=secondary_preprocessor_args, warn_not_found_words=warn_not_found_words) # if there is any/some set has less words than the allowed limit, # return the default value (nan) if embeddings is None: return { 'query_name': query.query_name, 'result': np.nan, 'kl-divergence': np.nan, 'score': np.nan, 'negative_sentiment_probabilities': {}, 'negative_sentiment_distribution': {} } # get the targets and attribute sets transformed into embeddings. target_sets, attribute_sets = embeddings # get only the embeddings of the sets. target_embeddings = list(target_sets.values()) attribute_embeddings = list(attribute_sets.values()) # create the arrays that will contain the scores for each iteration calculated_divergences = [] calculated_negative_sentiment_probabilities = [] scores = [] # calculate the scores for each iteration for _ in range(num_iterations): # train the logit with the train data. trained_classifier, score = self._train_classifier( attribute_embeddings_dict=attribute_embeddings, random_state=random_state, estimator=estimator, estimator_params=estimator_params, print_model_evaluation=print_model_evaluation) scores.append(score) # get the scores divergence, negative_sentiment_probabilities = self._calc_rnsb( target_embeddings, trained_classifier) calculated_divergences.append(divergence) calculated_negative_sentiment_probabilities.append( negative_sentiment_probabilities) # aggregate results divergence = np.mean(np.array(calculated_divergences)) negative_sentiment_probabilities = dict( pd.DataFrame(calculated_negative_sentiment_probabilities).mean()) sum_of_prob = np.sum(list(negative_sentiment_probabilities.values())) negative_sentiment_distribution = { word: prob / sum_of_prob for word, prob in negative_sentiment_probabilities.items() } return { 'query_name': query.query_name, 'result': divergence, 'kl-divergence': divergence, 'clf_accuracy': np.mean(scores), 'negative_sentiment_probabilities': negative_sentiment_probabilities, 'negative_sentiment_distribution': negative_sentiment_distribution }