

    
      
          
            
  
Welcome to the WEFE documentation!

WEFE: The Word Embeddings Fairness Evaluation Framework is an open source
library for measuring and mitigating bias in word embedding models.

The following pages contain the documentation about WEFE:
how to install the package, how to use it and how to contribute, as well as
the detailed API documentation and extensive examples.
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About

Word Embedding Fairness Evaluation (WEFE) is an open source library for
measuring an mitigating bias in word embedding models.
It generalizes many existing fairness metrics into a unified framework and
provides a standard interface for:


	Encapsulating existing fairness metrics from previous work and designing
new ones.


	Encapsulating the test words used by fairness metrics into standard
objects called queries.


	Computing a fairness metric on a given pre-trained word embedding model
using user-given queries.




WEFE also standardizes the process of mitigating bias through an interface similar
to the scikit-learn fit-transform.
This standardization separates the mitigation process into two stages:


	The logic of calculating the transformation to be performed on the model (fit).


	The execution of the mitigation transformation on the model (transform).





Motivation and objectives

Word Embeddings models are a core component in almost all NLP downstream systems.
Several studies have shown that they are prone to inherit stereotypical social
biases from the corpus they were built on.
The common method for quantifying bias is to use a metric that calculates the
relationship between sets of word embeddings representing different social
groups and attributes.

Although previous studies have begun to measure bias in embeddings, they are
limited both in the types of bias measured (gender, ethnic) and in the models
tested.
Moreover, each study proposes its own metric, which makes the relationship
between the results obtained unclear.

This fact led us to consider that we could use these metrics and studies to
make a case study in which we compare and rank the embedding models according
to their bias.

We originally proposed WEFE as a theoretical framework that formalizes the
main building blocks for measuring bias in word embedding models.
The purpose of developing this framework was to run a case study that consistently
compares and ranks different embedding models.
Seeing the possibility that other research teams are facing the same problem,
we decided to improve this code and publish it as a library, hoping that it
can be useful for their studies.

We later realized that the library had the potential to cover more areas than just
bias measurement. This is why WEFE is constantly being improved, which so far has
resulted in a new bias mitigation module and multiple enhancements and fixes.

The main objectives we want to achieve with this library are:


	To provide a ready-to-use tool that allows the user to run bias tests in a
straightforward manner.


	To provide a ready-to-use tool that allows the user to mitigate bias by means of a
simple fit-transform interface.


	To provide simple interface and utils to develop new metrics and mitigation methods.






Similar Packages

There are quite a few alternatives that complement WEFE. Be sure to check them out!


	Fair Embedding Engine: https://github.com/FEE-Fair-Embedding-Engine/FEE


	ResponsiblyAI: https://github.com/ResponsiblyAI/responsibly






Measurement Framework

Here we present the main building blocks of the measuring framework and then, we present
the common usage pattern of WEFE.


Target set

A target word set (denoted by \(T\)) corresponds to a
set of words intended to denote a particular social group,which is defined by a
certain criterion. This criterion can be any character, trait or origin that
distinguishes groups of people from each other e.g., gender, social class, age,
and ethnicity. For example, if the criterion is gender we can use it to
distinguish two groups, women and men. Then, a set of target words
representing the social group “women” could contain words like ‘she’,
‘woman’, ‘girl’, etc. Analogously  a set of target words the representing the
social group ‘men’ could include ‘he’, ‘man’, ‘boy’, etc.



Attribute set

An attribute word set (denoted by \(A\)) is a set of words
representing some attitude, characteristic, trait, occupational field, etc.
that  can  be  associated  with individuals from any social group. For example,
the set of science attribute  words  could  contain  words  such as
‘technology’, ‘physics’, ‘chemistry’, while the art attribute words could have
words like ‘poetry’,  ‘dance’,  ‘literature’.



Query

Queries are the main building blocks used by fairness metrics to measure bias
of word embedding models.
Formally, a query is a pair \(Q=(\mathcal{T},\mathcal{A})\) in which
\(T\) is a set of target word sets, and \(A\) is a set of attribute
word sets. For example, consider the target word sets:


\[\begin{split}\begin{eqnarray*}
T_{\text{women}} & = & \{{she},{woman},{girl}, \ldots\}, \\
T_{\text{men}} & = & \{{he},{man},{boy}, \ldots\},
\end{eqnarray*}\end{split}\]

and the attribute word sets


\[\begin{split}\begin{eqnarray*}
A_{\text{science}} & = & \{{math},{physics},{chemistry}, \ldots\}, \\
A_{\text{art}} & = & \{{poetry},{dance},{literature}, \ldots\}.
\end{eqnarray*}\end{split}\]

Then the following is a query in our framework


\[\begin{equation}
Q=(\{T_{\text{women}}, T_{\text{men}}\},\{A_{\text{science}},A_{\text{art}}\}).
\end{equation}\]

When a set of queries \(\mathcal{Q} = {Q_1, Q_2, \dots, Q_n}\) is intended
to measure a single type of bias, we say that the set has a
Bias Criterion.
Examples of bias criteria are gender, ethnicity, religion, politics,
social class, among others.


Warning

To accurately study the biases contained in word embeddings, queries may
contain words that could be offensive to certain groups or individuals.
The relationships studied between these words DO NOT represent the ideas,
thoughts or beliefs of the authors of this library.
This warning applies to all documentation.





Query Template

A query template is simply a pair \((t,a)\in\mathbb{N}\times\mathbb{N}\).
We say that query \(Q=(\mathcal{T},\mathcal{A})\) satisfies a
template \((t,a)\) if \(|\mathcal{T}|=t\) and \(|\mathcal{A}|=a\).



Fairness Measure

A fairness metric is a function that quantifies the degree of association
between target and attribute words in a word embedding model.
In our framework, every fairness metric is defined as a function that has a
query and a model as input, and produces a real number as output.

Several fairness metrics have been proposed in the literature.
But not all of them share a common input template for queries.
Thus, we assume that every fairness metric comes with a template that
essentially defines the shape of the input queries supported by the metric.

Formally, let \(F\) be a fairness metric with template \(s_F=(t_F,a_F)\).
Given an embedding model \(\mathbf{M}\) and a query \(Q\) that
satisfies \(s_F\), the metric produces the value
\(F(\mathbf{M},Q)\in \mathbb{R}\) that quantifies the degree of bias of
\(\mathbf{M}\) with respect to query \(Q\).



Standard usage pattern of WEFE

The following flow chart shows how to perform a bias measurement using a gender
query, word2vec embeddings and the WEAT metric.

[image: Gender query with WEAT Flow]
To see the implementation of this query using WEFE, refer to
the Quick start section.




Metrics

The metrics implemented in the package so far are:


WEAT

Word Embedding Association Test (WEAT) was presented in the paper:



Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan.

Semantics derived automatically from language corpora contain human-like biases.

Science, 356(6334):183–186, 2017.






The following description of the metric is WEFE’s adaptation of what was presented
in the original WEAT work.

WEAT receives two sets \(T_1\) and \(T_2\) of target words,
and two sets \(A_1\) and \(A_2\) of attribute words and performs a
hypothesis test on the following null hypothesis:
There is no difference between the two sets of target words in terms of their
relative similarity to the similarity with the two sets of attribute words.

In formal terms, let \(T_1\) and \(T_2\) be two sets of target words of
equal size, and \(A_1\), \(A_2\) the two sets of attribute words.
Let \(\cos(\vec{a},\vec{b})\) denote the cosine of the angle between the vectors
\(\vec{a}\) and \(\vec{b}\). The test statistic is:


\[\text{WEAT}(T_1,T_2,A_1,A_2) = \sum_{x \in T_1} s(x, A_1, A_2) - \sum_{y \in T_2} s(y, A_1, A_2)\]

where


\[s(w, A, B)=\text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}
_{b \in B} \cos(\vec{w},\vec{b})\]

\(s(w,A,B)\) measures the association of \(w\) with the
attributes, and \(\text{WEAT}(T_1,T_2,A_1,A_2)\) measures the differential association
of the two sets of target words with the attribute.

This metric also contains a variant: WEAT Effect Size (WEAT-ES). This variant represents a
normalized measure that quantifies how far apart the two distributions of association
between targets and attributes are. Iin practical terms, WEAT Effect Size makes the
metric not dependent on the number of words used in each set.


\[\text{WEAT-ES}(T_1,T_2,A_1,A_2) = \frac{\text{mean}_{x \in T_1}\, s(x, A_1, A_2) - \text{mean}_{y \in T_2}\, s(y, A_1, A_2) }{\text{std-dev}_{w \in T_1 \cup T_2}\, s(w, A_1, A_2)}\]

The permutation test measures the (un)likelihood of the null hypothesis by
computing the probability that a random permutation of the attribute words would
produce the observed (or greater) difference in sample mean.

Let \({(T_{1_i},T_{2_i})}_{i}\) denote all the partitions of \(T_1 \cup T_2\)
into two sets of equal size. The one-sided p-value of the permutation test is:


\[\text{Pr}_{i}[s(T_{1_i}, T_{2_i}, A_1, A_2) > s(T_1, T_2, A_1, A_2)]\]



RND

Relative Norm Distance (RND), presented in the paper “Word embeddings quantify
100 years of gender and ethnic stereotypes”.
RND averages the embeddings of
each target set, then for each of the attribute words, calculates the norm
of the difference between the word and the average target, and then subtracts
the norms. The more positive (negative) the relative distance from the norm,
the more associated are the sets of attributes towards group two (one).



RNSB

Relative Negative Sentiment Bias (RNSB) was presented in the paper:



Chris Sweeney and Maryam Najafian. A transparent framework for evaluating

unintended demographic bias in word embeddings.

In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 1662–1667, 2019.






Originally this metric is based on measuring bias through word sentiment.
The main idea is that if there were no bias, all words should be equally negative.
Therefore, its procedure is based on calculating how negative the words in the target
sets are.

For this purpose, RNSB trains a classifier that assigns a probability to each
word of belonging to the negative class (in the original work the classifier is trained
using Bing Liu’s lexicon [https://wefe.readthedocs.io/en/latest/generated/dataloaders/wefe.load_bingliu.html]
of positive and negative words).
Then, it generates a probability distribution with the probabilities calculated in
the previous step and compares them to the uniform distribution
(case where all words have the same probability of being negative) using KL divergence.
When the negative probability distribution is equal to the uniform one (i.e., there
is no bias), the KL divergence is 0.

The following description of the metric is WEFE’s adaptation of what was presented
in the original RNSB work.

RNSB receives as input queries with two attribute sets \(A_1\) and
\(A_2\) and two or more target sets. Thus has a template (tuple of numbers that
defines the allowed target and attribute sets in the query)
of the form \(s=(N,2)\) with \(N\geq 2\).

Given a query \(Q=(\{T_1,T_2,\ldots,T_n\},\{A_1,A_2\})\) RNSB is calculated under
the following steps:


	First constructs a binary classifier  \(C_{(A_1,A_2)}(\cdot)\) using
set \(A_1\) as training examples for the negative class, and \(A_2\) as
training examples for the positive class.


	After the training process, this classifier gives for every word \(w\) a
probability \(C_{(A_1,A_2)}(w)\) that can be interpreted as the degree of
association of \(w\) with respect to  \(A_2\) (value
\(1-C_{(A_1,A_2)}(w)\) is the degree of association with \(A_1\)).


	Then, the metric construct a probability distribution \(P(\cdot)\) over all
the words \(w\) in \(T_1\cup \cdots \cup T_n\), by computing
\(C_{(A_1,A_2)}(w)\) and normalizing it to ensure that \(\sum_w P(w)=1\).


	Finally RNSB is calculated as the distance between \(P(\cdot)\) and
the uniform distribution \(Y(\cdot)\) using the KL-divergence.




The main idea behind RNSB is that the more that \(P(\cdot)\) resembles a
uniform distribution, the less biased the word embedding model is.
Thus, the optimal value is 0.



MAC

Mean Average Cosine Similarity (MAC), presented in the paper “Black is to
Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias
in Word Embeddings”.



ECT

The Embedding Coherence Test, presented in “Attenuating Bias in Word vectors”
calculates the average target group vectors, measures the cosine similarity of each
to a list of attribute words and calculates the correlation of the resulting
similarity lists.



RIPA

The Relational Inner Product Association, presented in the paper “Understanding
Undesirable Word Embedding Associations”, calculates bias by measuring the bias of a term
by using the relation vector (i.e the first principal component of a pair of words that define
the association) and calculating the dot product of this vector with the attribute word vector.
RIPA’s advantages are its interpretability, and its relative robustness compared to WEAT
with regard to how the relation vector is defined.




Relevant Papers

The intention of this section is to provide a list of the works on which WEFE
relies as well as a rough reference of works on measuring and mitigating bias
in word embeddings.


Measurements and Case Studies


	Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. [http://www.cs.bath.ac.uk/~jjb/ftp/CaliskanSemantics-Arxiv.pdf].


	Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644. [https://www.pnas.org/content/pnas/115/16/E3635.full.pdf].


	Sweeney, C., & Najafian, M. (2019, July). A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 1662-1667). [https://www.aclweb.org/anthology/P19-1162.pdf].


	Dev, S., & Phillips, J. (2019, April). Attenuating Bias in Word vectors. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (pp. 879-887). [http://proceedings.mlr.press/v89/dev19a.html].


	Ethayarajh, K., & Duvenaud, D., & Hirst, G. (2019, July). Understanding Undesirable Word Embedding Associations. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 1696-1705). [https://aclanthology.org/P19-1166].






Bias Mitigation


	Bolukbasi, T., Chang, K. W., Zou, J., Saligrama, V., & Kalai, A. (2016). Quantifying and reducing stereotypes in word embeddings. arXiv preprint arXiv:1606.06121. [https://arxiv.org/pdf/1606.06121.pdf]


	Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Advances in neural information processing systems (pp. 4349-4357). [http://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf]


	Zhao, J., Zhou, Y., Li, Z., Wang, W., & Chang, K. W. (2018). Learning gender-neutral word embeddings. arXiv preprint arXiv:1809.01496. [https://arxiv.org/pdf/1809.01496.pdf]


	Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K. W. (2017). Men also like shopping: Reducing gender bias amplification using corpus-level constraints. arXiv preprint arXiv:1707.09457. [https://arxiv.org/pdf/1707.09457.pdf]


	Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings [https://arxiv.org/pdf/1904.04047].


	Gonen, H., & Goldberg, Y. (2019). Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. arXiv preprint arXiv:1903.03862. [https://arxiv.org/pdf/1903.03862.pdf]






Surveys and other resources

A Survey on Bias and Fairness in Machine Learning


	Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635. [https://arxiv.org/pdf/1908.09635.pdf]


	Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv preprint arXiv:1801.09536. [https://arxiv.org/pdf/1801.09536.pdf]


	Camacho-Collados, J., & Pilehvar, M. T. (2018). From word to sense embeddings: A survey on vector representations of meaning. Journal of Artificial Intelligence Research, 63, 743-788. [https://www.jair.org/index.php/jair/article/view/11259/26454]




Bias in Contextualized Word Embeddings


	Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., & Chang, K. W. (2019). Gender bias in contextualized word embeddings. arXiv preprint arXiv:1904.03310. [https://arxiv.org/pdf/1904.03310]


	Basta, C., Costa-jussà, M. R., & Casas, N. (2019). Evaluating the underlying gender bias in contextualized word embeddings. arXiv preprint arXiv:1904.08783. [https://arxiv.org/pdf/1904.08783]


	Kurita, K., Vyas, N., Pareek, A., Black, A. W., & Tsvetkov, Y. (2019). Measuring bias in contextualized word representations. arXiv preprint arXiv:1906.07337. [https://arxiv.org/pdf/1906.07337]


	Tan, Y. C., & Celis, L. E. (2019). Assessing social and intersectional biases in contextualized word representations. In Advances in Neural Information Processing Systems (pp. 13209-13220). [http://papers.nips.cc/paper/9479-assessing-social-and-intersectional-biases-in-contextualized-word-representations]


	Stereoset: A Measure of Bias in Language Models [https://stereoset.mit.edu/]







Citation

Please cite the following paper if using this package in an academic publication:
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29th International Joint Conference on Artificial Intelligence and the 17th
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Roadmap

We expect in the future to:


	Implement the metrics that have come out in recent works on bias in embeddings.


	Implement new queries on different criteria.


	Create a single script that evaluates different embedding models under different bias criteria.


	From the previous script, rank as many embeddings available on the web as possible.


	Implement a visualization module.


	Implement p-values with statistic resampling to all metrics.






License

WEFE is licensed under the BSD 3-Clause License.

Details of the license on this link [https://github.com/dccuchile/wefe/blob/master/LICENSE].



Team


	Pablo Badilla [https://github.com/pbadillatorrealba/].


	Felipe Bravo-Marquez [https://felipebravom.com/].


	Jorge Pérez [https://users.dcc.uchile.cl/~jperez/].





Contributors

We thank all our contributors who have allowed WEFE to grow, especially
stolenpyjak [https://github.com/stolenpyjak/] and
mspl13 [https://github.com/mspl13/] for implementing new metrics.

Thank you very much 😊!



Contact

Please write to pablo.badilla at ug.chile.cl for inquiries about the software.
You are also welcome to do a pull request or publish an issue in the
WEFE repository on Github [https://github.com/dccuchile/wefe/].
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Quick Start

In this tutorial we show you how to install WEFE and then how to run a
basic query.


Download and setup

There are two different ways to install WEFE:


	To install the package with pip, run in a console:

pip install --upgrade wefe







	To install the package with conda, run in a console:

conda install -c pbadilla wefe











Run your first Query


Warning

If you are not familiar with the concepts of query, target and attribute
set, please visit the the framework section
on the library’s about page.
These concepts be widely used in the following sections.



In the following code we show how to implement the example query presented
in WEFE’s home page: A gender Query using WEAT metrics on the glove-twitter Word
Embedding model.

The following graphic shows the flow of the query execution:

[image: Gender query with WEAT Flow]
The programming of the previous flow can be separated into three steps:


	Load the Word Embedding model.


	Create the Query.


	Run the Query using the WEAT metric over the Word Embedding Model.




These stages be implemented next:

1. Load the Word Embedding pretrained model from gensim and then,
create a :code:`` instance with it.
This object took a gensim’s KeyedVectors object and a model name as
parameters.
As we said previously, for this example, we use glove-twitter-25' embedding model.

>>> # import the modules
>>> from wefe.query import Query
>>> from wefe.word_embedding_model import WordEmbeddingModel
>>> from wefe.metrics.WEAT import WEAT
>>> import gensim.downloader as api
>>>
>>> # load glove
>>> twitter_25 = api.load('glove-twitter-25')
>>> model = WordEmbeddingModel(twitter_25, 'glove twitter dim=25')





2. Create the Query with a loaded, fetched or custom target and attribute
word sets. In this case, we manually set both target words and attribute
words.

>>> # create the word sets
>>> target_sets = [['she', 'woman', 'girl'], ['he', 'man', 'boy']]
>>> target_sets_names = ['Female Terms', 'Male Terms']
>>>
>>> attribute_sets = [['poetry','dance','literature'], ['math', 'physics', 'chemistry']]
>>> attribute_sets_names = ['Arts', 'Science']
>>>
>>> # create the query
>>> query = Query(target_sets, attribute_sets, target_sets_names,
>>>               attribute_sets_names)





3. Instantiate the metric to be used and then, execute run_query
with the parameters created in the past steps. In this case we use the
WEAT metric.

>>> # instance a WEAT metric
>>> weat = WEAT()
>>> result = weat.run_query(query, model)
>>> print(result)
{
  'query_name': 'Female Terms and Male Terms wrt Arts and Science',
  'result': 0.2595698336760204,
  'weat': 0.2595698336760204,
  'effect_size': 1.452482230821006,
  'p_value': nan
}





A score greater than 0 indicates that there is indeed a biased relationship between
women and the arts with respect to men and science.

For more advanced usage, visit user the User Guide
section.





            

          

      

      

    

  

    
      
          
            
  
Bias Measurement

The following guide is designed to present the more general details on
using the package to measure bias. The following sections show:


	how to run a simple query using Glove embedding model.


	how to run multiple queries on multiple embeddings.


	how to compare the results obtained from running multiple
sets of queries on multiple embeddings using different metrics
through ranking calculation.


	how to calculate the correlations between the
rankings obtained.





Warning

To accurately study and reduce biases contained in word embeddings, queries may
contain words that could be offensive to certain groups or individuals.
The relationships studied between these words DO NOT represent the
ideas, thoughts or beliefs of the authors of this library.
This warning applies to all documentation.




Note

If you are not familiar with the concepts of query, target and attribute
set, please visit the the framework
section [https://wefe.readthedocs.io/en/latest/about.html#the-framework]
on the library’s about page. These concepts are widely used in the
following sections.



A jupyter notebook with this code is located in the following link: WEFE User
Guide [https://github.com/dccuchile/wefe/blob/master/examples/User_Guide.ipynb].


Run a Query

The following subsections explains how to run a simple query that
measures gender bias on
Glove [https://nlp.stanford.edu/projects/glove/]. The example uses
the Word Embedding Association Test (WEAT) metric quantifying the
bias in the embeddings model. Below we show the three usual steps for
performing a query in WEFE:


Note

WEAT is a fairness metric that quantifies the relationship between
two sets of target words (sets of words intended to denote a social
groups as men and women) and two sets of attribute words (sets of words
representing some attitude, characteristic, trait, occupational field,
etc. that can be associated with individuals from any social group). The
closer its value is to 0, the less biased the model is. WEAT was
originally implemented in Semantics derived automatically from language
corpora contain human-like biases paper.




Load a word embeddings model as a WordEmbedding object.

Load the word embedding model and then wrap it using a
WordEmbeddingModel (class that allows WEFE to handle the models).

WEFE bases all its operations on word embeddings using Gensim’s
KeyedVectors interface. Any model that can be loaded using
KeyedVectors will be compatible with WEFE. The following example uses a 25-dim pre-trained Glove model using a
twitter dataset loaded using gensim-data [https://github.com/RaRe-Technologies/gensim-data/].

import gensim.downloader as api

from wefe.datasets import load_weat
from wefe.metrics import WEAT
from wefe.query import Query
from wefe.word_embedding_model import WordEmbeddingModel

twitter_25 = api.load("glove-twitter-25")
# WordEmbeddingModel receives as first argument a KeyedVectors model
# and the second argument the model name.
model = WordEmbeddingModel(twitter_25, "glove twitter dim=25")







Create the query using a Query object

Define the target and attribute word sets and create a Query object
that contains them.

For this initial example, a query is used to study the association
between gender with respect to family and career. The words used are
taken from the set of words used in the Semantics derived automatically
from language corpora contain human-like biases paper, which are
included in the datasets module.

gender_query = Query(
    target_sets=[
        ["female", "woman", "girl", "sister", "she", "her", "hers", "daughter"],
        ["male", "man", "boy", "brother", "he", "him", "his", "son"],
    ],
    attribute_sets=[
        [
            "home",
            "parents",
            "children",
            "family",
            "cousins",
            "marriage",
            "wedding",
            "relatives",
        ],
        [
            "executive",
            "management",
            "professional",
            "corporation",
            "salary",
            "office",
            "business",
            "career",
        ],
    ],
    target_sets_names=["Female terms", "Male Terms"],
    attribute_sets_names=["Family", "Careers"],
)

print(gender_query)





<Query: Female terms and Male Terms wrt Family and Careers
- Target sets: [['home', 'parents', 'children', 'family', 'cousins', 'marriage',
                 'wedding', 'relatives'],
                 ['executive', 'management', 'professional', 'corporation',
                 'salary', 'office', 'business', 'career']]
- Attribute sets:[['female', 'woman', 'girl', 'sister', 'she', 'her', 'hers',
                   'daughter'],
                   ['male', 'man', 'boy', 'brother', 'he', 'him', 'his', 'son']]>







Run the Query

Instantiate the metric that you will use and then execute run_query
with the parameters created in the previous steps.

Any bias measurement process at WEFE consists of the following steps:


	Metric arguments checking.


	Transform the word sets into word embeddings.


	Calculate the metric.




In this case we use the WEAT metric (proposed in the
same paper of the set of words used in the query).

metric = WEAT()
result = metric.run_query(gender_query, model)
print(result)





{'query_name': 'Female terms and Male Terms wrt Family and Careers',
 'result': 0.3165843551978469,
 'weat': 0.3165843551978469,
 'effect_size': 0.6779444653930398,
 'p_value': nan}





By default, the results are a dict containing the query name (in the
key query_name) and the calculated value of the metric in the
result key. It also contains a key with the name and the value of
the calculated metric (which is duplicated in the “results” key).

Depending on the metric class used, the result dict can also return
more metrics, detailed word-by-word values or other statistics like
p-values. Also some metrics allow you to change the default value in
results.

Details of all the metrics implemented, their parameters and
examples of execution can be found at API
documentation [https://wefe.readthedocs.io/en/latest/api.html].




Run Query Arguments

Each metric allows varying the behavior of run_query according to
different parameters. There are parameters to customize the
transformation of the sets of words to sets of embeddings, others to
warn errors or modify which calculation method the metric use.

For example, run_query can be instructed to return effect_size
in the result key by setting return_effect_size as True.
Note that this parameter is only of the class WEAT.

weat = WEAT()
result = weat.run_query(gender_query, model, return_effect_size=True)
print(result)





{'query_name': 'Female terms and Male Terms wrt Family and Careers',
 'result': 0.6779444653930398,
 'weat': 0.3165843551978469,
 'effect_size': 0.6779444653930398,
 'p_value': nan}





You can also request run_query to run the statistical significance
calculation by setting calculate_p_value as True. This checks
how many queries generated from permutations (controlled by the
parameter p_value_iterations) of the target sets obtain values
greater than those obtained by the original query.

weat = WEAT()
result = weat.run_query(
    gender_query, model, calculate_p_value=True, p_value_iterations=15000
)
print(result)





{'query_name': 'Female terms and Male Terms wrt Family and Careers',
 'result': 0.3165843551978469,
 'weat': 0.3165843551978469,
 'effect_size': 0.6779444653930398,
 'p_value': 0.09032731151256583}







Out of Vocabulary Words

It is common in the literature to find bias tests whose tagret sets are
common names of social groups. These names are commonly cased and may
contain special characters. There are several embedding models whose
words are not cased or do not have accents or other special characters,
as for example, in Glove. This implies that a query with target sets
composed by names executed in Glove (without any preprocessing of
the words) could produce erroneous results because WEFE will not be able
to find the names in the model vocabulary.


Note

Some well-known word sets are already provided by the package and can be
easily loaded by the user through the datasets module. From here on,
the tutorial use the words defined in the study Semantics derived
automatically from language corpora contain human-like biases, the same
that proposed the WEAT metric.



# load the weat word sets.
word_sets = load_weat()

# print a set of european american common names.
print(word_sets["european_american_names_5"])





['Adam', 'Harry', 'Josh', 'Roger', 'Alan', 'Frank', 'Justin', 'Ryan',
 'Andrew', 'Jack', 'Matthew', 'Stephen', 'Brad', 'Greg', 'Paul',
 'Jonathan', 'Peter', 'Amanda', 'Courtney', 'Heather', 'Melanie', 'Sara',
 'Amber', 'Katie', 'Betsy', 'Kristin', 'Nancy', 'Stephanie', 'Ellen',
 'Lauren', 'Colleen', 'Emily', 'Megan', 'Rachel']





The following query compares European-American and African-American
names with respect to pleasant and unpleasant attributes.


Note

It can be indicated to run_query to log the words that were lost in
the transformation to vectors by using the parameter
warn_not_found_words as True.



ethnicity_query = Query(
    [word_sets["european_american_names_5"], word_sets["african_american_names_5"]],
    [word_sets["pleasant_5"], word_sets["unpleasant_5"]],
    ["European american names", "African american names"],
    ["Pleasant", "Unpleasant"],
)
result = weat.run_query(ethnicity_query, model, warn_not_found_words=True,)
print(result)





WARNING:root:The following words from set 'European american names' do not exist within the vocabulary of glove twitter dim=25: ['Adam', 'Harry', 'Josh', 'Roger', 'Alan', 'Frank', 'Justin', 'Ryan', 'Andrew', 'Jack', 'Matthew', 'Stephen', 'Brad', 'Greg', 'Paul', 'Jonathan', 'Peter', 'Amanda', 'Courtney', 'Heather', 'Melanie', 'Sara', 'Amber', 'Katie', 'Betsy', 'Kristin', 'Nancy', 'Stephanie', 'Ellen', 'Lauren', 'Colleen', 'Emily', 'Megan', 'Rachel']
WARNING:root:The transformation of 'European american names' into glove twitter dim=25 embeddings lost proportionally more words than specified in 'lost_words_threshold': 1.0 lost with respect to 0.2 maximum loss allowed.
WARNING:root:The following words from set 'African american names' do not exist within the vocabulary of glove twitter dim=25: ['Alonzo', 'Jamel', 'Theo', 'Alphonse', 'Jerome', 'Leroy', 'Torrance', 'Darnell', 'Lamar', 'Lionel', 'Tyree', 'Deion', 'Lamont', 'Malik', 'Terrence', 'Tyrone', 'Lavon', 'Marcellus', 'Wardell', 'Nichelle', 'Shereen', 'Ebony', 'Latisha', 'Shaniqua', 'Jasmine', 'Tanisha', 'Tia', 'Lakisha', 'Latoya', 'Yolanda', 'Malika', 'Yvette']
WARNING:root:The transformation of 'African american names' into glove twitter dim=25 embeddings lost proportionally more words than specified in 'lost_words_threshold': 1.0 lost with respect to 0.2 maximum loss allowed.
ERROR:root:At least one set of 'European american names and African american names wrt Pleasant and Unpleasant' query has proportionally fewer embeddings than allowed by the lost_vocabulary_threshold parameter (0.2). This query will return np.nan.





{'query_name': 'European american names and African american names wrt Pleasant and Unpleasant',
 'result': nan,
 'weat': nan,
 'effect_size': nan}


.. warning::

If more than 20% of the words from any of the word sets of the query are
lost during the transformation to embeddings, the result of the metric
will be np.nan. This behavior can be changed using a float number
parameter called lost_vocabulary_threshold.



Word Preprocessors

run_queries allows preprocessing each word before they are searched in the model’s
vocabulary.through the parameter preprocessors. (list of one or more preprocessor).
This parameter accepts a list of individual preprocessors, which are defined below:

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before its looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to lowercase.


	uppercase: bool. Indicates that the words are transformed to uppercase.


	titlecase: bool. Indicates that the words are transformed to titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that the accents of the words are eliminated. The stripping type can be specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates on each word. In the case of specifying a function, it overrides the default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows searching for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of the model.
In case some of them are not found, {"lowercase": True, "strip_accents": True}
is executed on these words and then they are searched in the model vocabulary.

By default (in case there is more than one preprocessor in the list) the first
preprocessed word found in the embeddings model is used.
This behavior can be controlled by the strategy parameter of run_query.

In the following example, we provide a list with only one
preprocessor that instructs run_query to lowercase and remove all
accents from every word before they are searched in the embeddings
model.

weat = WEAT()
result = weat.run_query(
    ethnicity_query,
    model,
    preprocessors=[{"lowercase": True, "strip_accents": True}],
    warn_not_found_words=True,
)
print(result)





WARNING:root:The following words from set 'African american names' do not exist within the vocabulary of glove twitter dim=25: ['Wardell']





{'query_name': 'European american names and African american names wrt Pleasant and Unpleasant',
 'result': 3.752915130034089,
 'weat': 3.752915130034089,
 'effect_size': 1.2746819501134965,
 'p_value': nan}





It may happen that it is more important to find the original word and in
the case of not finding it, then preprocess it and look it up in the
vocabulary. This behavior can be specified in preprocessors list by
first specifying an empty preprocessor {} and then the preprocessor
that converts to lowercase and removes accents.

weat = WEAT()
result = weat.run_query(
    ethnicity_query,
    model,
    preprocessors=[
        {},  # empty preprocessor, search for the original words.
        {
            "lowercase": True,
            "strip_accents": True,
        },  # search for lowercase and no accent words.
    ],
    warn_not_found_words=True,
)

print(result)





WARNING:root:The following words from set 'European american names' do not exist within the vocabulary of glove twitter dim=25: ['Adam', 'Harry', 'Josh', 'Roger', 'Alan', 'Frank', 'Justin', 'Ryan', 'Andrew', 'Jack', 'Matthew', 'Stephen', 'Brad', 'Greg', 'Paul', 'Jonathan', 'Peter', 'Amanda', 'Courtney', 'Heather', 'Melanie', 'Sara', 'Amber', 'Katie', 'Betsy', 'Kristin', 'Nancy', 'Stephanie', 'Ellen', 'Lauren', 'Colleen', 'Emily', 'Megan', 'Rachel']
WARNING:root:The following words from set 'African american names' do not exist within the vocabulary of glove twitter dim=25: ['Alonzo', 'Jamel', 'Theo', 'Alphonse', 'Jerome', 'Leroy', 'Torrance', 'Darnell', 'Lamar', 'Lionel', 'Tyree', 'Deion', 'Lamont', 'Malik', 'Terrence', 'Tyrone', 'Lavon', 'Marcellus', 'Wardell', 'Wardell', 'Nichelle', 'Shereen', 'Ebony', 'Latisha', 'Shaniqua', 'Jasmine', 'Tanisha', 'Tia', 'Lakisha', 'Latoya', 'Yolanda', 'Malika', 'Yvette']





{'query_name': 'European american names and African american names wrt Pleasant and Unpleasant',
 'result': 3.752915130034089,
 'weat': 3.752915130034089,
 'effect_size': 1.2746819501134965,
 'p_value': nan}





The number of preprocessing steps can be increased as needed. For
example, we can complex the above preprocessor to first search for the
original words, then for the lowercase words, and finally for the
lowercase words without accents.

weat = WEAT()
result = weat.run_query(
    ethnicity_query,
    model,
    preprocessors=[
        {},  # first step: empty preprocessor, search for the original words.
        {"lowercase": True,},  # second step: search for lowercase.
        {
            "lowercase": True,
            "strip_accents": True,
        },  # third step: search for lowercase and no accent words.
    ],
    warn_not_found_words=True,
)

print(result)





WARNING:root:The following words from set 'European american names' do not exist within the vocabulary of glove twitter dim=25: ['Adam', 'Harry', 'Josh', 'Roger', 'Alan', 'Frank', 'Justin', 'Ryan', 'Andrew', 'Jack', 'Matthew', 'Stephen', 'Brad', 'Greg', 'Paul', 'Jonathan', 'Peter', 'Amanda', 'Courtney', 'Heather', 'Melanie', 'Sara', 'Amber', 'Katie', 'Betsy', 'Kristin', 'Nancy', 'Stephanie', 'Ellen', 'Lauren', 'Colleen', 'Emily', 'Megan', 'Rachel']
WARNING:root:The following words from set 'African american names' do not exist within the vocabulary of glove twitter dim=25: ['Alonzo', 'Jamel', 'Theo', 'Alphonse', 'Jerome', 'Leroy', 'Torrance', 'Darnell', 'Lamar', 'Lionel', 'Tyree', 'Deion', 'Lamont', 'Malik', 'Terrence', 'Tyrone', 'Lavon', 'Marcellus', 'Wardell', 'Wardell', 'Wardell', 'Nichelle', 'Shereen', 'Ebony', 'Latisha', 'Shaniqua', 'Jasmine', 'Tanisha', 'Tia', 'Lakisha', 'Latoya', 'Yolanda', 'Malika', 'Yvette']





{'query_name': 'European american names and African american names wrt Pleasant and Unpleasant',
 'result': 3.752915130034089,
 'weat': 3.752915130034089,
 'effect_size': 1.2746819501134965,
 'p_value': nan}





It is also possible to change the behavior of the search by including
not only the first word, but all the words generated by the
preprocessors. This can be controlled by specifying the parameter
strategy=all.

weat = WEAT()
result = weat.run_query(
    ethnicity_query,
    model,
    preprocessors=[
        {},  # first step: empty preprocessor, search for the original words.
        {"lowercase": True,},  # second step: search for lowercase .
        {"uppercase": True,},  # third step: search for uppercase.
    ],
    strategy="all",
    warn_not_found_words=True,
)

print(result)





WARNING:root:The following words from set 'European american names' do not exist within the vocabulary of glove twitter dim=25: ['Adam', 'Adam', 'Harry', 'Harry', 'Josh', 'Josh', 'Roger', 'Roger', 'Alan', 'Alan', 'Frank', 'Frank', 'Justin', 'Justin', 'Ryan', 'Ryan', 'Andrew', 'Andrew', 'Jack', 'Jack', 'Matthew', 'Matthew', 'Stephen', 'Stephen', 'Brad', 'Brad', 'Greg', 'Greg', 'Paul', 'Paul', 'Jonathan', 'Jonathan', 'Peter', 'Peter', 'Amanda', 'Amanda', 'Courtney', 'Courtney', 'Heather', 'Heather', 'Melanie', 'Melanie', 'Sara', 'Sara', 'Amber', 'Amber', 'Katie', 'Katie', 'Betsy', 'Betsy', 'Kristin', 'Kristin', 'Nancy', 'Nancy', 'Stephanie', 'Stephanie', 'Ellen', 'Ellen', 'Lauren', 'Lauren', 'Colleen', 'Colleen', 'Emily', 'Emily', 'Megan', 'Megan', 'Rachel', 'Rachel']
WARNING:root:The following words from set 'African american names' do not exist within the vocabulary of glove twitter dim=25: ['Alonzo', 'Alonzo', 'Jamel', 'Jamel', 'Theo', 'Theo', 'Alphonse', 'Alphonse', 'Jerome', 'Jerome', 'Leroy', 'Leroy', 'Torrance', 'Torrance', 'Darnell', 'Darnell', 'Lamar', 'Lamar', 'Lionel', 'Lionel', 'Tyree', 'Tyree', 'Deion', 'Deion', 'Lamont', 'Lamont', 'Malik', 'Malik', 'Terrence', 'Terrence', 'Tyrone', 'Tyrone', 'Lavon', 'Lavon', 'Marcellus', 'Marcellus', 'Wardell', 'Wardell', 'Wardell', 'Nichelle', 'Nichelle', 'Shereen', 'Shereen', 'Ebony', 'Ebony', 'Latisha', 'Latisha', 'Shaniqua', 'Shaniqua', 'Jasmine', 'Jasmine', 'Tanisha', 'Tanisha', 'Tia', 'Tia', 'Lakisha', 'Lakisha', 'Latoya', 'Latoya', 'Yolanda', 'Yolanda', 'Malika', 'Malika', 'Yvette', 'Yvette']
WARNING:root:The following words from set 'Pleasant' do not exist within the vocabulary of glove twitter dim=25: ['caress', 'freedom', 'health', 'love', 'peace', 'cheer', 'friend', 'heaven', 'loyal', 'pleasure', 'diamond', 'gentle', 'honest', 'lucky', 'rainbow', 'diploma', 'gift', 'honor', 'miracle', 'sunrise', 'family', 'happy', 'laughter', 'paradise', 'vacation']
WARNING:root:The following words from set 'Unpleasant' do not exist within the vocabulary of glove twitter dim=25: ['abuse', 'crash', 'filth', 'murder', 'sickness', 'accident', 'death', 'grief', 'poison', 'stink', 'assault', 'disaster', 'hatred', 'pollute', 'tragedy', 'divorce', 'jail', 'poverty', 'ugly', 'cancer', 'kill', 'rotten', 'vomit', 'agony', 'prison']





{'query_name': 'European american names and African american names wrt Pleasant and Unpleasant',
 'result': 3.752915130034089,
 'weat': 3.752915130034089,
 'effect_size': 1.2746819501134965,
 'p_value': nan}







Running multiple Queries

It is usual to want to test many queries of some bias criterion (gender,
ethnicity, religion, politics, socioeconomic, among others) on several
models at the same time. Trying to use run_query on each pair
embedding-query can be a bit complex and could require extra work to
implement.

This is why the library also implements a function to test multiple
queries on various word embedding models in a single call: the
run_queries util.

The following code shows how to run various gender queries on Glove
embedding models with different dimensions trained from the Twitter
dataset. The queries are executed using WEAT metric.

import gensim.downloader as api

from wefe.datasets import load_weat
from wefe.metrics import RNSB, WEAT
from wefe.query import Query
from wefe.utils import run_queries
from wefe.word_embedding_model import WordEmbeddingModel






Load the models

Load three different Glove Twitter embedding models. These models were
trained using the same dataset varying the number of embedding
dimensions.

model_1 = WordEmbeddingModel(api.load("glove-twitter-25"), "glove twitter dim=25")
model_2 = WordEmbeddingModel(api.load("glove-twitter-50"), "glove twitter dim=50")
model_3 = WordEmbeddingModel(api.load("glove-twitter-100"), "glove twitter dim=100")

models = [model_1, model_2, model_3]







Load the word sets and create the queries

Now, we load the WEAT word set and create three queries. The
three queries are intended to measure gender bias.

# Load the WEAT word sets
word_sets = load_weat()

# Create gender queries
gender_query_1 = Query(
    [word_sets["male_terms"], word_sets["female_terms"]],
    [word_sets["career"], word_sets["family"]],
    ["Male terms", "Female terms"],
    ["Career", "Family"],
)

gender_query_2 = Query(
    [word_sets["male_terms"], word_sets["female_terms"]],
    [word_sets["science"], word_sets["arts"]],
    ["Male terms", "Female terms"],
    ["Science", "Arts"],
)

gender_query_3 = Query(
    [word_sets["male_terms"], word_sets["female_terms"]],
    [word_sets["math"], word_sets["arts_2"]],
    ["Male terms", "Female terms"],
    ["Math", "Arts"],
)

gender_queries = [gender_query_1, gender_query_2, gender_query_3]







Run the queries on all Word Embeddings using WEAT.

To run our list of queries and models, we call run_queries using the
parameters defined in the previous step. The mandatory parameters of the
function are 3:


	a metric,


	a list of queries, and,


	a list of embedding models.




It is also possible to provide a name for the criterion studied in this
set of queries through the parameter queries_set_name.

# Run the queries
WEAT_gender_results = run_queries(
    WEAT, gender_queries, models, queries_set_name="Gender Queries"
)
WEAT_gender_results





WARNING:root:The transformation of 'Science' into glove twitter dim=25 embeddings lost proportionally more words than specified in 'lost_words_threshold': 0.25 lost with respect to 0.2 maximum loss allowed.
ERROR:root:At least one set of 'Male terms and Female terms wrt Science and Arts' query has proportionally fewer embeddings than allowed by the lost_vocabulary_threshold parameter (0.2). This query will return np.nan.
WARNING:root:The transformation of 'Science' into glove twitter dim=50 embeddings lost proportionally more words than specified in 'lost_words_threshold': 0.25 lost with respect to 0.2 maximum loss allowed.
ERROR:root:At least one set of 'Male terms and Female terms wrt Science and Arts' query has proportionally fewer embeddings than allowed by the lost_vocabulary_threshold parameter (0.2). This query will return np.nan.
WARNING:root:The transformation of 'Science' into glove twitter dim=100 embeddings lost proportionally more words than specified in 'lost_words_threshold': 0.25 lost with respect to 0.2 maximum loss allowed.
ERROR:root:At least one set of 'Male terms and Female terms wrt Science and Arts' query has proportionally fewer embeddings than allowed by the lost_vocabulary_threshold parameter (0.2). This query will return np.nan.







  
    
    

    Bias Mitigation
    

    
 
  

    
      
          
            
  
Bias Mitigation

WEFE also provides several methods to mitigate the bias of the embedding
models. In the following section:


	We present how to reduce binary bias (such as gender bias) using Hard
Debias.


	We present how to reduce multiclass bias (such as ethnic having
classes like black, white, Latino, etc…) using Multiclass Hard
Debias.




import gensim.downloader as api

from wefe.datasets import fetch_debiaswe, load_weat
from wefe.debias.hard_debias import HardDebias
from wefe.metrics import WEAT
from wefe.query import Query
from wefe.word_embedding_model import WordEmbeddingModel

twitter_25 = api.load("glove-twitter-25")
model = WordEmbeddingModel(twitter_25, "glove-twitter-dim=25")






Hard Debias

This method allow reducing the bias of an embedding model through
geometric operations between embeddings. This method is binary because
it only allows two classes of the same bias criterion, such as male or
female.

The main idea of this method is:


	
	Identify a bias subspace through the defining sets. In the case
	of gender, these could be
e.g., {'woman', 'man'}, {'she', 'he'}, ...







	Neutralize the bias subspace on the embeddings that should not be
biased.


First, it is defined a set of words that are correct to be related to
the bias criterion: the criterion specific gender words. For
example, in the case of gender, gender specific words are:
{'he', 'his', 'He', 'her', 'she', 'him', 'him', 'She', 'man', 'women', 'men'...}.

Then, it is defined that all words outside this set should have no
relation to the bias criterion and thus have the possibility of being
biased. (e.g. for the case of gender: {doctor, nurse, ...}).
Therefore, this set of words is neutralized with respect to the bias
subspace found in the previous step.

The neutralization is carried out under the following operation:


	u : embedding


	v : bias direction




First calculate the projection of the embedding on the bias subspace.


	projection = v • (v • u) / (v • v)




Then subtract the projection from the embedding.


	u’ = u - projection









	Equalize the embeddings with respect to the bias direction..


Given an equalization set (set of word pairs such as [she, he], [men,
women], …, but not limited to the definitional set) this step
executes, for each pair, an equalization with respect to the bias
direction. That is, it takes a pair of embeddings and distributes
them both at the same distance from the bias direction, so that
neither is closer to the bias direction than the other.









Fit-Transform Interface

WEFE implements all debias methods through an interface inspired by the
transformers of scikit-learn. That is, the execution of a debias
method involves two steps: - First a training through the fit method
where the transformation that will be applied on the embeddings is
calculated - Second, a transform that applies the trained
transformation.

Each of these stages defines its own parameters.

The fit parameters define how the neutralization will be calculated. In
Hard Debias, you have to provide the the definitional_pairs, the
equalize_pairs (which could be the same of definitional pairs) and
optionally, a debias criterion_name (to name the debiased model).

debiaswe_wordsets = fetch_debiaswe()

definitional_pairs = debiaswe_wordsets["definitional_pairs"]
equalize_pairs = debiaswe_wordsets["equalize_pairs"]
gender_specific = debiaswe_wordsets["gender_specific"]

hd = HardDebias(verbose=False, criterion_name="gender").fit(
    model,
    definitional_pairs=definitional_pairs,
    equalize_pairs=equalize_pairs,
)





The parameters of the transform method are relatively standard for all
methods. The most important ones are target, ignore and
copy.

In the following example we use ignore and copy, which are
described below:


	ignore (by default, None):


A list of strings that indicates that the debias method will perform
the debias in all words except those specified in this list. In case
it is not specified, debias will be executed on all words. In case
ignore is not specified or its value is None, the transformation will
be performed on all embeddings. This may cause words that are
specific to social groups to lose that component (for example,
leaving 'she' and 'he' without a gender component).






	copy (by default True):


if the value of copy is True, method attempts to create a copy of
the model and run debias on the copy. If False, the method is
applied on the original model, causing the vectors to mutate.

WARNING: Setting copy with True requires at least 2x RAM of
the size of the model. Otherwise the execution of the debias may raise
MemoryError.








Next, the transformation is executed using a copy of the model,
ignoring the words contained in gender_specific.

gender_debiased_model = hd.transform(model, ignore=gender_specific, copy=True)





Copy argument is True. Transform will attempt to create a copy of the original model. This may fail due to lack of memory.
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors
Model copy created successfully.
100%|██████████| 1193514/1193514 [00:18<00:00, 65143.18it/s]
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors





Using the metrics displayed in the first section of this user guide, we
can measure whether or not there was a change in the measured bias
between the original model and the debiased model.

weat_wordset = load_weat()
weat = WEAT()

gender_query_1 = Query(
    [word_sets["male_terms"], word_sets["female_terms"]],
    [word_sets["career"], word_sets["family"]],
    ["Male terms", "Female terms"],
    ["Career", "Family"],
)

gender_query_2 = Query(
    [weat_wordset["male_names"], weat_wordset["female_names"]],
    [weat_wordset["pleasant_5"], weat_wordset["unpleasant_5"]],
    ["Male Names", "Female Names"],
    ["Pleasant", "Unpleasant"],
)





biased_results_1 = weat.run_query(gender_query_1, model, normalize=True)
debiased_results_1 = weat.run_query(gender_query, gender_debiased_model, normalize=True)

print(round(debiased_results_1["weat"], 3),"<",round(biased_results_1["weat"], 3),
    "=",debiased_results_1["weat"] < biased_results_1["weat"],)





-0.06 < 0.317 = True





biased_results_2 = weat.run_query(
    gender_query_2, model, normalize=True, preprocessors=[{}, {"lowercase": True}]
)
debiased_results_2 = weat.run_query(
    gender_query_2,
    gender_debiased_model,
    normalize=True,
    preprocessors=[{}, {"lowercase": True}],
)

print(
    round(debiased_results_2["weat"], 3),"<",round(biased_results_2["weat"], 3),
    "=",debiased_results_2["weat"] < biased_results_2["weat"],)





-1.033 < -0.949 = True







Target Parameter


	target: If a set of words is specified in target, the debias method will be performed
only on the word embeddings associated with this set. In the case of providing
None, the transformation will be performed on all vocabulary words except those
specified in ignore. By default None.

In the following example, the target parameter is used to execute the transformation
only on the career and family word set:





targets = ['executive',
           'management',
           'professional',
           'corporation',
           'salary',
           'office',
           'business',
           'career',
           'home',
           'parents',
           'children',
           'family',
           'cousins',
           'marriage',
           'wedding',
           'relatives']

hd = HardDebias(verbose=False, criterion_name="gender").fit(
    model,
    definitional_pairs=definitional_pairs,
    equalize_pairs=equalize_pairs,
)

gender_debiased_model = hd.transform(
    model, target=targets, copy=True
)





Copy argument is True. Transform will attempt to create a copy of the original model. This may fail due to lack of memory.
Model copy created successfully.
100%|██████████| 16/16 [00:00<00:00, 10754.63it/s]
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors





Next, a bias test is run on the mitigated embeddings associated with the
target words. In this case, the value of the metric is lower on the
query executed on the mitigated model than on the original one.
These results indicate that there was a mitigation of bias on embeddings of these words.

biased_results_1 = weat.run_query(gender_query_1, model, normalize=True)
debiased_results_1 = weat.run_query(gender_query, gender_debiased_model, normalize=True)

print(round(debiased_results_1["weat"], 3),"<",round(biased_results_1["weat"], 3)
      ,"=",debiased_results_1["weat"] < biased_results_1["weat"],)





-0.06 < 0.317 = True





However, if a bias test is run with words that were outside the target
word set, the results are almost the same. The slight difference in the
metric scores lies in the fact that the equalize sets were still
equalized.
Equalization can be deactivated by delivering an empty equalize set ([])

biased_results_2 = weat.run_query(
    gender_query_2, model, normalize=True, preprocessors=[{}, {"lowercase": True}]
)
debiased_results_2 = weat.run_query(
    gender_query_2,
    gender_debiased_model,
    normalize=True,
    preprocessors=[{}, {"lowercase": True}],
)

print(round(debiased_results_2["weat"], 3),"<",round(biased_results_2["weat"], 3),
    "=",debiased_results_2["weat"] < biased_results_2["weat"],)





-0.941 < -0.949 = False







Save the Debiased Model

To save the mitigated model one must access the KeyedVectors (the
gensim object that contains the embeddings) through wv and then use
the save method to store the method in a file.

gender_debiased_model.wv.save('gender_debiased_glove.kv')





INFO:gensim.utils:saving Word2VecKeyedVectors object under gender_debiased_glove.kv, separately None
INFO:gensim.utils:storing np array 'vectors' to gender_debiased_glove.kv.vectors.npy
INFO:gensim.utils:not storing attribute vectors_norm
DEBUG:smart_open.smart_open_lib:{'uri': 'gender_debiased_glove.kv', 'mode': 'wb', 'buffering': -1, 'encoding': None, 'errors': None, 'newline': None, 'closefd': True, 'opener': None, 'ignore_ext': False, 'compression': None, 'transport_params': None}
INFO:gensim.utils:saved gender_debiased_glove.kv








Multiclass Hard Debias

Multiclass Hard Debias is a generalized version of Hard Debias that
enables multiclass debiasing. Generalized refers to the fact that this
method extends Hard Debias in order to support more than two types of
social target sets within the definitional set.

For example, for the case of religion bias, it supports a debias using
words associated with Christianity, Islam and Judaism.

The usage is very similar to Hard Debias with the difference that the
definitional_sets can be larger than pairs.

from wefe.datasets import fetch_debias_multiclass
from wefe.debias.multiclass_hard_debias import MulticlassHardDebias

multiclass_debias_wordsets = fetch_debias_multiclass()
weat_wordsets = load_weat()
weat = WEAT()

ethnicity_definitional_sets = multiclass_debias_wordsets["ethnicity_definitional_sets"]
ethnicity_equalize_sets = list(
    multiclass_debias_wordsets["ethnicity_analogy_templates"].values()
)

mhd = MulticlassHardDebias(verbose=True, criterion_name="ethnicity")
mhd.fit(
    model=model,
    definitional_sets=ethnicity_definitional_sets,
    equalize_sets=ethnicity_equalize_sets,
)

ethnicity_debiased_model = mhd.transform(model, copy=True)





INFO:wefe.debias.multiclass_hard_debias:PCA variance explaned: [4.0089381e-01 2.3377793e-01 1.7155512e-01 7.3547199e-02 5.5353384e-02
3.5681739e-02 2.2261711e-02 6.9290772e-03 2.4344339e-15 2.4052477e-15]
Obtaining definitional sets.
Word(s) found: ['black', 'caucasian', 'asian'], not found: []
Word(s) found: ['african', 'caucasian', 'asian'], not found: []
Word(s) found: ['black', 'white', 'asian'], not found: []
Word(s) found: ['africa', 'america', 'asia'], not found: []
Word(s) found: ['africa', 'america', 'china'], not found: []
Word(s) found: ['africa', 'europe', 'asia'], not found: []
6/6 sets of words were correctly converted to sets of embeddings
Identifying the bias subspace.
Obtaining equalize pairs.
Word(s) found: ['manager', 'executive', 'redneck', 'hillbilly', 'leader', 'farmer'], not found: []
Word(s) found: ['doctor', 'engineer', 'laborer', 'teacher'], not found: []
Word(s) found: ['slave', 'musician', 'runner', 'criminal', 'homeless'], not found: []
3/3 sets of words were correctly converted to sets of embeddings
Executing Multiclass Hard Debias on glove-twitter-dim=25
copy argument is True. Transform will attempt to create a copy of the original model. This may fail due to lack of memory.


INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors

Model copy created successfully.
Normalizing embeddings.
Neutralizing embeddings

100%|██████████| 1193504/1193504 [01:38<00:00, 12108.73it/s]
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors
DEBUG:wefe.debias.multiclass_hard_debias:Equalizing embeddings..
INFO:gensim.models.keyedvectors:precomputing L2-norms of word weight vectors

Normalizing embeddings.
Normalizing embeddings.
Done!





# test with weat

ethnicity_query = Query(
    [
        multiclass_debias_wordsets["white_terms"],
        multiclass_debias_wordsets["black_terms"],
    ],
    [multiclass_debias_wordsets["white_biased_words"],
    multiclass_debias_wordsets["black_biased_words"]],
    ["european_american_names", "african_american_names"],
    ["white_biased_words", "black_biased_words"],
)

biased_results = weat.run_query(
    ethnicity_query, model, normalize=True, preprocessors=[{}, {"lowercase": True}],
)
debiased_results = weat.run_query(
    ethnicity_query,
    ethnicity_debiased_model,
    normalize=True,
    preprocessors=[{}, {"lowercase": True}],
)





Absolute value is used here because the closer the value is to zero, the
less biased the model is.

import numpy as np

print(
    '| -',
    round(np.abs(debiased_results["weat"]), 3),
    "| < | -",
    round(np.abs(biased_results["weat"]), 3),
    "| =",
    np.abs(debiased_results["weat"]) < np.abs(biased_results["weat"]),
)





| - 0.027 | < | - 0.088 | = True
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Loading Embeddings From Different Sources

WEFE depends on gensim’s KeyedVectors to operate the word
embeddings models.
Therefore, any embedding you want to experiment with must be a model loaded
through gensim’s APIs or any library that extends it.

In technical terms, the minimum requirement for WEFE to operate with a model
is that it extends the BaseKeyedVectors class.

Next we show several options to load models using different sources.


Create a example query

In this section we only create an example query (same as the query of user guide)
to be used in the following sections.

>>> # Load the query
>>> from wefe.query import Query
>>> from wefe.word_embedding_model import WordEmbeddingModel
>>> from wefe.metrics.WEAT import WEAT
>>> from wefe.datasets.datasets import load_weat
>>>
>>> # load the weat word sets
>>> word_sets = load_weat()
>>>
>>> # create the query
>>> query = Query([word_sets['male_terms'], word_sets['female_terms']],
>>>               [word_sets['career'], word_sets['family']],
>>>               ['Male terms', 'Female terms'],
>>>               ['Career', 'Family'])
>>>
>>> # instantiate the metric
>>> weat = WEAT()







Load from Gensim API

Gensim provides an
extensive list of pre-trained models [https://github.com/RaRe-Technologies/gensim-data#models]
that can be used directly. Below we show an example of use.

>>> import gensim.downloader as api
>>>
>>> # Load from gensim.downloader some model, for example: glove-twitter-25
>>> glove_25_keyed_vectors = api.load('glove-twitter-25')
>>>
>>> # The resulting object is already a BaseKeyedVectors subclass object.
>>> # so we can wrap directly using .
>>> glove_25_model = WordEmbeddingModel(glove_25_keyed_vectors, 'glove-25')
>>>
>>> # Execute the query
>>> result = weat.run_query(query, glove_25_model)
>>> print(result)
{'query_name': 'Male terms and Female terms wrt Career and Family', 'result': 0.33814692}







Using Gensim Load

As we said before, any model that is loaded with gensim and extends
BaseKeyedVectors can be used in WEFE to measure bias.
In this section we will see how to load a word2vec model and Fasttext.


Note

Gensim is not directly compatible with glove model file format.
However, they provide a
script [https://radimrehurek.com/gensim/scripts/glove2word2vec.html]
that allows you to transform any glove model into a word2vec format.




Loading Word2vec

For example, let us load word2vec from a .bin file
The procedure is quite simple: first we download word2vec binary file from its source
and then we load it using the KeyedVectors.load_word2vec_format function.

>>> from gensim.models import KeyedVectors
>>>
>>> w2v_embeddings = KeyedVectors.load_word2vec_format("/path/to/your/embeddings/model", binary=True)
>>> word2vec = WordEmbeddingModel(w2v_embeddings, 'word2vec')
>>>
>>> result = weat.run_query(query, word2vec)
>>> result
{'query_name': 'Male terms and Female terms wrt Career and Family',
 'result': 0.7280304}







Loading FastText

The same method works for Fasttext.

>>> from gensim.models import KeyedVectors
>>> fast_embeddings = KeyedVectors.load_word2vec_format('path/to/fast/embeddings.vec')
>>>
>>> fast = WordEmbeddingModel(fast_embeddings, 'fast')
>>> result = weat.run_query(query, fast)
>>>
>>> result
{'query_name': 'Male terms and Female terms wrt Career and Family',
 'result': 0.34870023}





While we load FastText here as KeyedVectors (i.e., in word2vec format),
it can also be used via FastTextKeyedVectors.




Flair

WEFE does not yet support flair interfaces.
However, you can use static embeddings of flair
(
Classic Word Embeddings [https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/CLASSIC_WORD_EMBEDDINGS.md]
) which are based on gensim’s KeyedVectors, to load embedding models.
The following code is an example of this:

>>> from flair.embeddings import WordEmbeddings
>>>
>>> glove_embedding = WordEmbeddings('glove') # 100 dim glove
>>>
>>> # extract KeyedVectors object
>>> glove_keyed_vectors = glove_embedding.precomputed_word_embeddings
>>> glove_100 = WordEmbeddingModel(glove_keyed_vectors, 'glove-100')
>>>
>>> result = weat.run_query(query, glove_100)
>>> print(result)
{'query_name': 'Male terms and Female terms wrt Career and Family', 'result': 1.0486683}
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Contributing

There are many ways to contribute to the library:


	Implement new metrics.


	Implement new mitigation methods.


	Create more examples and use cases.


	Help improve the documentation.


	Create more tests.




All contributions are welcome!


Get the repository

You can download the library by running the following command

git clone https://github.com/dccuchile/wefe





To contribute, simply create a pull request.
Verify that your code is well documented, to implement unit tests and
follow the PEP8 coding style.



Testing

All unit tests are located in the wefe/test folder and are based on the
pytest framework.
In order to run tests, you will first need to install
pytest and pytest-cov:

pip install -U pytest
pip install pytest-cov





To run the tests, execute:

pytest wefe





To check the coverage, run:

py.test wefe --cov-report xml:cov.xml --cov wefe





And then:

coverage report -m







Build the documentation

The documentation is created using sphinx. It can be found in the doc folder
at the project’s root folder.
The documentation includes the API description and some tutorials.
To compile the documentation, run the following commands:

cd doc
make html









How to implement your own metric

The following guide is intended to show how to implement a metric using WEFE.
You can find a notebook version of this tutorial at the following
link [https://github.com/dccuchile/wefe/blob/master/wefe/examples/Contributing.ipynb/].


Create the class

The first step is to create the class that will contain the metric. This
class must extend the BaseMetric class.

In the new class you must specify the template (explained below), the
name and an abbreviated name or acronym for the metric as class
variables.

A template is a tuple that defines the cardinality of the target and
attribute sets of a query that can be accepted by the metric. It can
take integer values, which require that the target or attribute sets
have that cardinality or ‘n’ in case the metric can operate with 1 or
more word sets. Note that this will indicate that all queries that do
not comply with the template will be rejected when executed using this
metric.

Below are some examples of templates:

# two target sets and one attribute set required to execute this metric.
template_1 = (2, 1)

# two target sets and two attribute sets required to execute this metric.
template_2 = (2, 2)

# one or more (unlimited) target sets and one attribute set required to execute this metric.
template_3 = ('n', 1)





Once the template is defined, you can create the metric according to the
following code scheme:

from wefe.metrics.base_metric import BaseMetric

class ExampleMetric(BaseMetric):
    metric_template = (2, 1)
    metric_name = 'Example Metric'
    metric_short_name = 'EM'







Implement run_query method

The second step is to implement run_query method. This method is in
charge of coordinating all the operations to calculate the scores from a
query and the word_embedding model. It must perform 2 basic
operations before executing the mathematical calculations:


Validate the parameters

This call checks the main parameters provided to the run_query and will raise an
exception if it finds a problem with them.

# check the types of the provided arguments.
self._check_input(query, model)







Transform the Query to Embeddings

This call transforms all the word sets of a query into embeddings.

# transform query word sets into embeddings
embeddings = get_embeddings_from_query(
    model=model,
    query=query,
    lost_vocabulary_threshold=lost_vocabulary_threshold,
    preprocessors=preprocessors,
    strategy=strategy,
    normalize=normalize,
    warn_not_found_words=warn_not_found_words,
)





This step could return either:


	None if any of the sets lost percentage more words than the number of words
allowed by lost_vocabulary_threshold parameter (specified as percentage
float). In this case the metric would be expected to return nan in its results.




# if there is any/some set has less words than the allowed limit,
# return the default value (nan)
if embeddings is None:
    return {
        "query_name": query.query_name,
        "result": np.nan,
        "metrica_default_value": np.nan,
    }






	A tuple otherwise. This tuple contains two values:



	A dictionary that maps each target set name to a dictionary containing its words and embeddings.


	A dictionary that maps each attribute set name to a dictionary containing its words and embeddings.











We can illustrate what the outputs of the previous transformation look
like using the following query:

from wefe.word_embedding_model import WordEmbeddingModel
from wefe.query import Query
from wefe.utils import load_test_model # a few embeddings of WEAT experiments
from wefe.datasets.datasets import load_weat # the word sets of WEAT experiments
from wefe.preprocessing import get_embeddings_from_query


weat = load_weat()
model = load_test_model()

flowers = weat['flowers']
weapons = weat['weapons']
pleasant = weat['pleasant_5']
query = Query([flowers, weapons], [pleasant],
            ['Flowers', 'Weapons'], ['Pleasant'])

embeddings = get_embeddings_from_query(
    model=model,
    query=query,
    # other params...
)
target_sets, attribute_sets = embeddings





If you inspect target_sets, it would look like the following
dictionary:

{
    'Flowers': {
        'aster': array([-0.22167969, 0.52734375, 0.01745605, ...], dtype=float32),
        'clover': array([-0.03442383, 0.19042969, -0.17089844, ...], dtype=float32),
        'hyacinth': array([-0.01391602, 0.3828125, -0.21679688, ...], dtype=float32),
        ...
    },
    'Weapons': {
        'arrow': array([0.18164062, 0.125, -0.12792969. ...], dtype=float32),
        'club': array([-0.04907227, -0.07421875, -0.0390625, ...], dtype=float32),
        'gun': array([0.05566406, 0.15039062, 0.33398438, ...], dtype=float32),
        'missile': array([4.7874451e-04, 5.1953125e-01, -1.3809204e-03, ...], dtype=float32),
        ...
    }
}





And attribute_sets would look like:

{
    'Pleasant': {
        'caress': array([0.2578125, -0.22167969, 0.11669922], dtype=float32),
        'freedom': array([0.26757812, -0.078125, 0.09326172], dtype=float32),
        'health': array([-0.07421875, 0.11279297, 0.09472656], dtype=float32),
        ...
    }
}





The idea of keeping a mapping between set names, words and their embeddings is that
there are some metrics that can calculate sub-metrics at different levels and that can
be useful for further use.



Example Metric

Using the steps previously seen, a sample metric is implemented:

from typing import Any, Dict, Union, List, Callable

import numpy as np

from wefe.metrics.base_metric import BaseMetric
from wefe.query import Query
from wefe.word_embedding_model import WordEmbeddingModel


class ExampleMetric(BaseMetric):

    # replace with the parameters of your metric
    metric_template = (2, 1) # cardinalities of the targets and attributes sets that your metric will accept.
    metric_name = 'Example Metric'
    metric_short_name = 'EM'

    def run_query(
        self,
        query: Query,
        model: WordEmbeddingModel,
        lost_vocabulary_threshold: float = 0.2,
        preprocessors: List[Dict[str, Union[str, bool, Callable]]] = [{}],
        strategy: str = "first",
        normalize: bool = False,
        warn_not_found_words: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """Calculate the Example Metric metric over the provided parameters.

        Parameters
        ----------
        query : Query
            A Query object that contains the target and attribute word sets to
            be tested.

        word_embedding : WordEmbeddingModel
            A WordEmbeddingModel object that contains certain word embedding
            pretrained model.

        lost_vocabulary_threshold : float, optional
            Specifies the proportional limit of words that any set of the query is
            allowed to lose when transforming its words into embeddings.
            In the case that any set of the query loses proportionally more words
            than this limit, the result values will be np.nan, by default 0.2

        preprocessors : List[Dict[str, Union[str, bool, Callable]]]
            A list with preprocessor options.

            A ``preprocessor`` is a dictionary that specifies what processing(s) are
            performed on each word before it is looked up in the model vocabulary.
            For example, the ``preprocessor``
            ``{'lowecase': True, 'strip_accents': True}`` allows you to lowercase
            and remove the accent from each word before searching for them in the
            model vocabulary. Note that an empty dictionary ``{}`` indicates that no
            preprocessing is done.

            The possible options for a preprocessor are:

            *   ``lowercase``: ``bool``. Indicates that the words are transformed to
                lowercase.
            *   ``uppercase``: ``bool``. Indicates that the words are transformed to
                uppercase.
            *   ``titlecase``: ``bool``. Indicates that the words are transformed to
                titlecase.
            *   ``strip_accents``: ``bool``, ``{'ascii', 'unicode'}``: Specifies that
                the accents of the words are eliminated. The stripping type can be
                specified. True uses ‘unicode’ by default.
            *   ``preprocessor``: ``Callable``. It receives a function that operates
                on each word. In the case of specifying a function, it overrides the
                default preprocessor (i.e., the previous options stop working).

            A list of preprocessor options allows searching for several
            variants of the words into the model. For example, the preprocessors
            ``[{}, {"lowercase": True, "strip_accents": True}]``
            ``{}`` allows first to search for the original words in the vocabulary of
            the model. In case some of them are not found,
            ``{"lowercase": True, "strip_accents": True}`` is executed on these words
            and then they are searched in the model vocabulary.

        strategy : str, optional
            The strategy indicates how it will use the preprocessed words: 'first' will
            include only the first transformed word found. all' will include all
            transformed words found, by default "first".

        normalize : bool, optional
            True indicates that embeddings will be normalized, by default False

        warn_not_found_words : bool, optional
            Specifies if the function will warn (in the logger)
            the words that were not found in the model's vocabulary
            , by default False.

        Returns
        -------
        Dict[str, Any]
            A dictionary with the query name, the resulting score of the metric,
            and other scores.
        """
        # check the types of the provided arguments (only the defaults).
        self._check_input(query, model)

        # transform query word sets into embeddings
        embeddings = get_embeddings_from_query(
            model=model,
            query=query,
            lost_vocabulary_threshold=lost_vocabulary_threshold,
            preprocessors=preprocessors,
            strategy=strategy,
            normalize=normalize,
            warn_not_found_words=warn_not_found_words,
        )

        # if there is any/some set has less words than the allowed limit,
        # return the default value (nan)
        if embeddings is None:
            return {
                'query_name': query.query_name, # the name of the evaluated query
                'result': np.nan, # the result of the metric
                'em': np.nan, # result of the calculated metric (recommended)
                'other_metric' : np.nan, # another metric calculated (optional)
                'results_by_word' : np.nan, # if available, values by word (optional)
                # ...
            }

        # get the targets and attribute sets transformed into embeddings.
        target_sets, attribute_sets = embeddings

        # commonly, you only will need the embeddings of the sets.
        # this can be obtained by using:
        target_embeddings = list(target_sets.values())
        attribute_embeddings = list(attribute_sets.values())


        """
        # From here, the code can vary quite a bit depending on what you need.
        # It is recommended to calculate the metric operations in another method(s).
        results = calc_metric()

        # The final step is to return query and result.
        # You can return other scores, metrics by word or metrics by set, etc.
        return {
                'query_name': query.query_name, # the name of the evaluated query
                'result': results.metric, # the result of the metric
                'em': results.metric # result of the calculated metric (recommended)
                'other_metric' : results.other_metric # Another metric calculated (optional)
                'another_results' : results.details_by_set # if available, values by word (optional),
                ...
            }
        """








Implement the logic of the metric

Suppose we want to implement an extremely simple three-step metric,
where:


	We calculate the average of all the sets,


	Then, calculate the cosine distance between the target set averages
and the attribute average.


	Subtract these distances.




To do this, we create a new method :code:_calc_metric in which,
using the array of embedding dict objects as input, we will implement
the above.

from typing import Any, Dict, Union, List, Callable

from scipy.spatial import distance
import numpy as np

from wefe.metrics import BaseMetric
from wefe.query import Query
from wefe.word_embedding_model import WordEmbeddingModel
from wefe.preprocessing import get_embeddings_from_query

class ExampleMetric(BaseMetric):

    # replace with the parameters of your metric
    metric_template = (
        2, 1
    )  # cardinalities of the targets and attributes sets that your metric will accept.
    metric_name = 'Example Metric'
    metric_short_name = 'EM'

    def _calc_metric(self, target_embeddings, attribute_embeddings):
        """Calculates the metric.

         Parameters
         ----------
         target_embeddings : np.array
             An array with dicts. Each dict represents an target set.
             A dict is composed with a word and its embedding as key, value respectively.
         attribute_embeddings : np.array
             An array with dicts. Each dict represents an attribute set.
             A dict is composed with a word and its embedding as key, value respectively.

         Returns
         -------
         np.float
             The value of the calculated metric.
         """

        # get the embeddings from the dicts
        target_embeddings_0 = np.array(list(target_embeddings[0].values()))
        target_embeddings_1 = np.array(list(target_embeddings[1].values()))

        attribute_embeddings_0 = np.array(
            list(attribute_embeddings[0].values()))

        # calculate the average embedding by target and attribute set.
        target_embeddings_0_avg = np.mean(target_embeddings_0, axis=0)
        target_embeddings_1_avg = np.mean(target_embeddings_1, axis=0)
        attribute_embeddings_0_avg = np.mean(attribute_embeddings_0, axis=0)

        # calculate the distances between the target sets and the attribute set
        dist_target_0_attr = distance.cosine(target_embeddings_0_avg,
                                             attribute_embeddings_0_avg)
        dist_target_1_attr = distance.cosine(target_embeddings_1_avg,
                                             attribute_embeddings_0_avg)

        # subtract the distances
        metric_result = dist_target_0_attr - dist_target_1_attr
        return metric_result

    def run_query(
        self,
        query: Query,
        model: WordEmbeddingModel,
        lost_vocabulary_threshold: float = 0.2,
        preprocessors: List[Dict[str, Union[str, bool, Callable]]] = [{}],
        strategy: str = "first",
        normalize: bool = False,
        warn_not_found_words: bool = False,
        *args: Any,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        """Calculate the Example Metric metric over the provided parameters.

        Parameters
        ----------
        query : Query
            A Query object that contains the target and attribute word sets to
            be tested.

        word_embedding : WordEmbeddingModel
            A WordEmbeddingModel object that contains certain word embedding
            pretrained model.

        lost_vocabulary_threshold : float, optional
            Specifies the proportional limit of words that any set of the query is
            allowed to lose when transforming its words into embeddings.
            In the case that any set of the query loses proportionally more words
            than this limit, the result values will be np.nan, by default 0.2

        preprocessors : List[Dict[str, Union[str, bool, Callable]]]
            A list with preprocessor options.

            A ``preprocessor`` is a dictionary that specifies what processing(s) are
            performed on each word before its looked up in the model vocabulary.
            For example, the ``preprocessor``
            ``{'lowecase': True, 'strip_accents': True}`` allows you to lowercase
            and remove the accent from each word before searching for them in the
            model vocabulary. Note that an empty dictionary ``{}`` indicates that no
            preprocessing is done.

            The possible options for a preprocessor are:

            *   ``lowercase``: ``bool``. Indicates that the words are transformed to
                lowercase.
            *   ``uppercase``: ``bool``. Indicates that the words are transformed to
                uppercase.
            *   ``titlecase``: ``bool``. Indicates that the words are transformed to
                titlecase.
            *   ``strip_accents``: ``bool``, ``{'ascii', 'unicode'}``: Specifies that
                the accents of the words are eliminated. The stripping type can be
                specified. True uses ‘unicode’ by default.
            *   ``preprocessor``: ``Callable``. It receives a function that operates
                on each word. In the case of specifying a function, it overrides the
                default preprocessor (i.e., the previous options stop working).

            A list of preprocessor options allows searching for several
            variants of the words into the model. For example, the preprocessors
            ``[{}, {"lowercase": True, "strip_accents": True}]``
            ``{}`` allows first to search for the original words in the vocabulary of the model.
            In case some of them are not found, ``{"lowercase": True, "strip_accents": True}``
            is executed on these words and then they are searched in the model vocabulary.

        strategy : str, optional
            The strategy indicates how it will use the preprocessed words: 'first' will
            include only the first transformed word found. all' will include all
            transformed words found, by default "first".

        normalize : bool, optional
            True indicates that embeddings will be normalized, by default False

        warn_not_found_words : bool, optional
            Specifies if the function will warn (in the logger)
            the words that were not found in the model's vocabulary
            , by default False.

        Returns
        -------
        Dict[str, Any]
            A dictionary with the query name, the resulting score of the metric,
            and other scores.
        """
        # check the types of the provided arguments (only the defaults).
        self._check_input(query, model)

        # transform query word sets into embeddings
        embeddings = get_embeddings_from_query(
            model=model,
            query=query,
            lost_vocabulary_threshold=lost_vocabulary_threshold,
            preprocessors=preprocessors,
            strategy=strategy,
            normalize=normalize,
            warn_not_found_words=warn_not_found_words,
        )

        # if there is any/some set has less words than the allowed limit,
        # return the default value (nan)
        if embeddings is None:
            return {
                'query_name': query.query_name, # the name of the evaluated query
                'result': np.nan, # the result of the metric
                'em': np.nan, # result of the calculated metric (recommended)
                'other_metric' : np.nan, # another metric calculated (optional)
                'results_by_word' : np.nan, # if available, values by word (optional)
                # ...
            }

        # get the targets and attribute sets transformed into embeddings.
        target_sets, attribute_sets = embeddings

        # commonly, you only will need the embeddings of the sets.
        # this can be obtained by using:
        target_embeddings = list(target_sets.values())
        attribute_embeddings = list(attribute_sets.values())

        result = self._calc_metric(target_embeddings, attribute_embeddings)

        # return the results.
        return {"query_name": query.query_name, "result": result, 'em': result}





Now, let us try it out:

from wefe.query import Query
from wefe.utils import load_weat_w2v  # a few embeddings of WEAT experiments
from wefe.datasets.datasets import load_weat  # the word sets of WEAT experiments

weat = load_weat()
model = WordEmbeddingModel(load_weat_w2v(), 'weat_w2v', '')

flowers = weat['flowers']
weapons = weat['weapons']
pleasant = weat['pleasant_5']
query = Query([flowers, weapons], [pleasant], ['Flowers', 'Weapons'],
                ['Pleasant'])


results = ExampleMetric().run_query(query, model)
print(results)





{'query_name': 'Flowers and Weapons wrt Pleasant', 'result': -0.10210171341896057, 'em': -0.10210171341896057}





We have completely defined a new metric. Congratulations!

Note

Some comments regarding the implementation of new metrics:


	Note that the returned object must necessarily be a dict instance
containing the result and query_name key-values. Otherwise
you will not be able to run query batches using utility functions
like run_queries.


	run_query can receive additional parameters. Simply add them to
the function signature. These parameters can also be used when
running the metric from the run_queries utility function.


	We recommend implementing the logic of the metric separated from the
run_query function. In other words, implement the logic in a
calc_your_metric function that receives the dictionaries with the
necessary embeddings and parameters.


	The file where ExampleMetric is located can be found inside the
distances folder of the
repository [https://github.com/dccuchile/wefe/blob/master/wefe/metrics/example_metric.py/].







Mitigation Method Implementation Guide

The main idea when implementing a mitigation method is that it has to follow the logic
of the transformations in scikit-learn.
That is, you must separate the logic of the calculation of the mitigation
transformation (fit) with the application of the transformation on the model
(transform).

In practical terms, every WEFE transformation must extend the BaseDebias class.
BaseDebias has two abstract methods that must be implemented: fit and transform.


Fit

fit is the method in charge of calculating the bias mitigation transformation
that will be subsequently applied to the model.
BaseDebias implements it as an abstract method that requires only one argument:
model, which expects a WordEmbeddingModel instance.

@abstractmethod
def fit(
    self,
    model: WordEmbeddingModel,
    **fit_params,
) -> "BaseDebias":
    """Fit the transformation.

    Parameters
    ----------
    model : WordEmbeddingModel
        The word embedding model to debias.
    """
    raise NotImplementedError()





The idea of requesting model at this point is that the calculation of the
transformation commonly requires some words from the model vocabulary.

As each bias mitigation method is different, it is expected that these can receive more
parameters than those listed above. In, HardDebias, fit is defined using the default
parameter model plus definitional_pairs and equalize_pairs, which are
specific to HardDebias:

def fit(
    self,
    model: WordEmbeddingModel,
    definitional_pairs: Sequence[Sequence[str]],
    equalize_pairs: Optional[Sequence[Sequence[str]]] = None,
    **fit_params,
) -> BaseDebias:
    """Compute the bias direction and obtains the equalize embedding pairs.

    Parameters
    ----------
    model : WordEmbeddingModel
        The word embedding model to debias.
    definitional_pairs : Sequence[Sequence[str]]
        A sequence of string pairs that will be used to define the bias direction.
        For example, for the case of gender debias, this list could be [['woman',
        'man'], ['girl', 'boy'], ['she', 'he'], ['mother', 'father'], ...].
    equalize_pairs : Optional[Sequence[Sequence[str]]], optional
        A list with pairs of strings which will be equalized.
        In the case of passing None, the equalization will be done over the word
        pairs passed in definitional_pairs,
        by default None.
    criterion_name : Optional[str], optional
        The name of the criterion for which the debias is being executed,
        e.g. 'Gender'. This will indicate the name of the model returning transform,
        by default None

    Returns
    -------
    BaseDebias
        The debias method fitted.
    """
    self._check_sets_size(definitional_pairs, "definitional")
    self.definitional_pairs_ = definitional_pairs

    # ------------------------------------------------------------------------------
    # Obtain the embedding of each definitional pairs.
    if self.verbose:
        print("Obtaining definitional pairs.")
    self.definitional_pairs_embeddings_ = get_embeddings_from_sets(
        model=model,
        sets=definitional_pairs,
        sets_name="definitional",
        warn_lost_sets=self.verbose,
        normalize=True,
        verbose=self.verbose,
    )

    # ------------------------------------------------------------------------------:
    # Identify the bias subspace using the definning pairs.
    if self.verbose:
        print("Identifying the bias subspace.")

    self.pca_ = self._identify_bias_subspace(
        self.definitional_pairs_embeddings_, self.verbose,
    )
    self.bias_direction_ = self.pca_.components_[0]
    # code was cut for simplicity.
    # you can visit the missing code in the file debias/HardDebias
    ...
    return self






Note

Note that get_embeddings_from_sets is used to transform word sets to embeddings
sets. This function, as well as the one to transform queries to embeddings, are
available in the preprocessing module.



Once fit has calculated the transformation, the method should return self.



Transform

This method is intended to implement the application of the transformation calculated
in fit on the embedding model. It must always receive the same 4 arguments:


	model: The model on which the transformation will be applied


	target: A set of words or None. If it is specified, the debias method will be performed
only on the word embeddings of this set. If None is provided, the
debias will be performed on all words (except those specified in ignore).
by default None.


	ignore: A set of words or None. If target is None and a set of words is specified


	in ignore, the debias method will perform the debias in all words except those


	specified in this set, by default None.


	copy: If True, the debias will be performed on a copy of the model.
If False, the debias will be applied on the same model delivered, causing
its vectors to mutate.




@abstractmethod
def transform(
    self,
    model: WordEmbeddingModel,
    target: Optional[List[str]] = None,
    ignore: Optional[List[str]] = None,
    copy: bool = True,
) -> WordEmbeddingModel:
    """Perform the debiasing method over the model provided.

    Parameters
    ----------
    model : WordEmbeddingModel
        The word embedding model to debias.
    target : Optional[List[str]], optional
        If a set of words is specified in target, the debias method will be performed
        only on the word embeddings of this set. If `None` is provided, the
        debias will be performed on all words (except those specified in ignore).
        by default `None`.
    ignore : Optional[List[str]], optional
        If target is `None` and a set of words is specified in ignore, the debias
        method will perform the debias in all words except those specified in this
        set, by default `None`.
    copy : bool, optional
        If `True`, the debias will be performed on a copy of the model.
        If `False`, the debias will be applied on the same model delivered, causing
        its vectors to mutate.
        **WARNING:** Setting copy with `True` requires at least 2x RAM of the size
        of the model. Otherwise the execution of the debias may raise
        `MemoryError`, by default True.

    Returns
    -------
    WordEmbeddingModel
        The debiased word embedding model.
    """
    raise NotImplementedError()





As can be seen, the embeddings that will be modified by the transformation are
determined by the words delivered in the target and ignore sets or the absence of
both (apply on all words).
The idea is that this convention is maintained during the creation of a new debias
method.

Some useful initial checks and operations for this method:


	The arguments can be checked through the _check_transform_args BaseDebias method.


	You can also check whether the method is trained or not using the check_is_fitted
method. This is a wrapper of the original scikit-learn that can be imported from the
utils module.


	In case copy argument is True, you must duplicate the model and work on the
replica. It is recommended to use deepcopy of the copy module for such purposes.




The following code segment (obtained from HardDebias) shows an example of how to
execute the points mentioned above:

def transform(
    self,
    model: WordEmbeddingModel,
    target: Optional[List[str]] = None,
    ignore: Optional[List[str]] = None,
    copy: bool = True,
    ) -> WordEmbeddingModel:
    """Execute hard debias over the provided model.

    Parameters
    ----------
    model : WordEmbeddingModel
        The word embedding model to debias.
    target : Optional[List[str]], optional
        If a set of words is specified in target, the debias method will be performed
        only on the word embeddings of this set. If `None` is provided, the
        debias will be performed on all words (except those specified in ignore).
        by default `None`.
    ignore : Optional[List[str]], optional
        If target is `None` and a set of words is specified in ignore, the debias
        method will perform the debias in all words except those specified in this
        set, by default `None`.
    copy : bool, optional
        If `True`, the debias will be performed on a copy of the model.
        If `False`, the debias will be applied on the same model delivered, causing
        its vectors to mutate.
        **WARNING:** Setting copy with `True` requires RAM at least 2x of the size
        of the model, otherwise the execution of the debias may raise to
        `MemoryError`, by default True.

    Returns
    -------
    WordEmbeddingModel
        The debiased embedding model.
    """
    # ------------------------------------------------------------------------------
    # Check types and if the method is fitted

    self._check_transform_args(
        model=model, target=target, ignore=ignore, copy=copy,
    )

    # check if the following attributes exist in the object.
    check_is_fitted(
        self,
        [
            "definitional_pairs_",
            "definitional_pairs_embeddings_",
            "pca_",
            "bias_direction_",
        ],
    )

    # Copy
    if copy:
        print(
            "Copy argument is True. Transform will attempt to create a copy "
            "of the original model. This may fail due to lack of memory."
        )
        model = deepcopy(model)
        print("Model copy created successfully.")

    else:
        print(
            "copy argument is False. The execution of this method will mutate "
            "the original model."
        )





Unfortunately it is impossible to cover much more without losing generality.
However, we recommend checking the code structure shown in HardDebias or
MulticlassHardDebias classes to guide you through the process of implementing a new
mitigation method.
You can also open an issue in the repository to comment on any questions you may have
in the implementation.
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WEFE API

This is the documentation of the API of WEFE.


WordEmbeddingModel







	WordEmbeddingModel(wv[, name, vocab_prefix])

	A wrapper for Word Embedding pre-trained models.








Query







	Query(target_sets, attribute_sets[, ...])

	A container for attribute and target word sets.








Metrics

This list contains the metrics implemented in WEFE.







	WEAT()

	Word Embedding Association Test (WEAT).












	RND()

	Relative Norm Distance (RND).












	RNSB()

	Relative Relative Negative Sentiment Bias (RNSB).












	MAC()

	Mean Average Cosine Similarity (MAC).












	ECT()

	Embedding Coherence Test [1].












	RIPA()

	An implementation of the Relational Inner Product Association Test, proposed by [1][2].








Debias

This list contains the debiasing methods implemented so far in WEFE.







	HardDebias([pca_args, verbose, criterion_name])

	Hard Debias debiasing method.












	MulticlassHardDebias([pca_args, verbose, ...])

	Generalized version of Hard Debias that enables multiclass debiasing.








Dataloaders

The following functions allow one to load word sets used in previous works.







	load_bingliu()

	Load the Bing-Liu sentiment lexicon.












	fetch_debias_multiclass()

	Fetch the word sets used in the paper Black Is To Criminals as Caucasian Is To Police: Detecting And Removing Multiclass Bias In Word Embeddings.












	fetch_debiaswe()

	Fetch the word sets used in the paper Man is to Computer Programmer as Woman is to Homemaker? from the source.












	fetch_eds([occupations_year, ...])

	Fetch the word sets used in the experiments of the work Word Embeddings *Quantify 100 Years Of Gender And Ethnic Stereotypes.












	load_weat()

	Load the word sets used in the paper Semantics Derived Automatically From Language Corpora Contain Human-Like Biases.








Preprocessing

The following functions allow transforming sets of words and queries to embeddings.
The documentation of the functions in this section are intended as a guide for WEFE developers.







	preprocess_word(word[, options, vocab_prefix])

	pre-processes a word before it is searched in the model's vocabulary.












	get_embeddings_from_set(model, word_set[, ...])

	Transform a sequence of words into dictionary that maps word - word embedding.












	get_embeddings_from_sets(model, sets[, ...])

	Given a sequence of word sets, obtain their corresponding embeddings.












	get_embeddings_from_query(model, query[, ...])

	Obtain the word vectors associated with the provided Query.
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wefe.WordEmbeddingModel


	
class wefe.WordEmbeddingModel(wv: KeyedVectors, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, vocab_prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	A wrapper for Word Embedding pre-trained models.

It can hold gensim’s KeyedVectors or gensim’s api loaded models.
It includes the name of the model and some vocab prefix if needed.


	
__init__(wv: KeyedVectors, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, vocab_prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Initialize the word embedding model.


	Parameters

	
	wvBaseKeyedVectors.
	An instance of word embedding loaded through gensim KeyedVector
interface or gensim’s api.



	namestr, optional
	The name of the model, by default ‘’.



	vocab_prefixstr, optional.
	A prefix that will be concatenated with all word in the model
vocab, by default None.







	Raises

	
	TypeError
	if word_embedding is not a KeyedVectors instance.



	TypeError
	if model_name is not None and not an instance of str.



	TypeError
	if vocab_prefix is not None and not an instance of str.









Examples

>>> from gensim.test.utils import common_texts
>>> from gensim.models import Word2Vec
>>> from wefe.word_embedding_model import WordEmbeddingModel





>>> dummy_model = Word2Vec(common_texts, window=5,
...                        min_count=1, workers=1).wv





>>> model = WordEmbeddingModel(dummy_model, 'Dummy model dim=10',
...                            vocab_prefix='/en/')
>>> print(model.name)
Dummy model dim=10
>>> print(model.vocab_prefix)
/en/






	Attributes

	
	wvBaseKeyedVectors
	The model.



	vocab
	The vocabulary of the model (a dict with the words that have an associated
embedding in the model).



	model_namestr
	The name of the model.



	vocab_prefixstr
	A prefix that will be concatenated with each word of the vocab
of the model.














	
batch_update(words: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], embeddings: Union [https://docs.python.org/3/library/typing.html#typing.Union][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]])

	Update a batch of embeddings.

This method calls update_embedding method with each of the word-embedding
pairs.
All words must be in the vocabulary, otherwise an exception will be thrown.
Note that both words and embeddings must have the same number of elements,
otherwise the method will raise an exception.


	Parameters

	
	wordsSequence[str]
	A sequence (list, tuple or np.array) that contains the words whose
representations will be updated.



	embeddingsUnion[Sequence[np.ndarray], np.array],
	A sequence (list or tuple) or a np.array of embeddings or an np.array that
contains all the new embeddings. The embeddings must have the same size and
data type as the model.







	Raises

	
	TypeError
	if words is not a list



	TypeError
	if embeddings is not an np.ndarray



	Exception
	if words collection has not the same size of the embedding array.














	
normalize()

	Normalize word embeddings in the model by using the L2 norm.

Use the init_sims function of the gensim’s KeyedVectors class.
Warning: This operation is inplace. In other words, it replaces the
embeddings with their L2 normalized versions.






	
update(word: str [https://docs.python.org/3/library/stdtypes.html#str], embedding: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	Update the value of an embedding of the model.

If the method is executed with a word that is not in the vocabulary, an
exception will be raised.


	Parameters

	
	wordstr
	The word whose embedding will be replaced. This word must be in the model’s
vocabulary.



	embeddingnp.ndarray
	An embedding representing the word. It must have the same dimensions and
data type as the model embeddings.







	Raises

	
	TypeError
	if word is not a1 string.



	TypeError
	if embedding is not an np.array.



	ValueError
	if word is not in the model’s vocabulary.



	ValueError
	if the embedding is not the same size as the size of the model’s embeddings.



	ValueError
	if the dtype of the embedding values is not the same as the model’s
embeddings.
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wefe.Query


	
class wefe.Query(target_sets: List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], attribute_sets: List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], target_sets_names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, attribute_sets_names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	A container for attribute and target word sets.


	
__init__(target_sets: List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], attribute_sets: List [https://docs.python.org/3/library/typing.html#typing.List][Any [https://docs.python.org/3/library/typing.html#typing.Any]], target_sets_names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, attribute_sets_names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Initializes the container. It could include a name for each word set.


	Parameters

	
	target_setsUnion[np.ndarray, list]
	Array or list that contains the target word sets.



	attribute_setsUnion[np.ndarray, Iterable]
	Array or list that contains the attribute word sets.



	target_sets_namesUnion[np.ndarray, Iterable], optional
	Array or list that contains the word sets names, by default None



	attribute_sets_namesUnion[np.ndarray, Iterable], optional
	Array or list that contains the attribute sets names,
by default None







	Raises

	
	TypeError
	if target_sets are not an iterable or np.ndarray instance.



	TypeError
	if attribute_sets are not an iterable or np.ndarray instance.



	Exception
	if the length of target_sets is 0.



	TypeError
	if some element of target_sets is not an array or list.



	TypeError
	if some element of some target set is not an string.



	TypeError
	if some element of attribute_sets is not an array or list.



	TypeError
	if some element of some attribute set is not an string.









Examples

Construct a Query with 2 sets of target words and one set of
attribute words.

>>> male_terms = ['male', 'man', 'boy']
>>> female_terms = ['female', 'woman', 'girl']
>>> science_terms = ['science','technology','physics']
>>> query = Query([male_terms, female_terms], [science_terms],
...               ['Male terms', 'Female terms'], ['Science terms'])
>>> query.target_sets
[['male', 'man', 'boy'], ['female', 'woman', 'girl']]
>>> query.attribute_sets
[['science', 'technology', 'physics']]
>>> query.query_name
'Male terms and Female terms wrt Science terms'






	Attributes

	
	target_setslist
	Array or list with the lists of target words.



	attribute_setslist
	Array or list with the lists of target words.



	templatetuple
	A tuple that contains the template: the cardinality of the target
and attribute sets respectively.



	target_sets_nameslist
	Array or list with the names of target sets.



	attribute_sets_nameslist
	Array or list with the lists of target words.



	query_namestr
	A string that contains the auto-generated name of the query.














	
get_subqueries(new_template: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Generate the subqueries from this query using the given template
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wefe.WEAT


	
class wefe.WEAT

	Word Embedding Association Test (WEAT).

The metric was originally proposed in [1].
Visit WEAT in Metrics Section [https://wefe.readthedocs.io/en/latest/about.html#weat]
for further information.

References


[1]: Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics derived

automatically from language corpora contain human-like biases.

Science, 356(6334):183–186, 2017.




	
__init__(*args, **kwargs)

	




	
run_query(query: Query, model: WordEmbeddingModel, return_effect_size: bool [https://docs.python.org/3/library/functions.html#bool] = False, calculate_p_value: bool [https://docs.python.org/3/library/functions.html#bool] = False, p_value_test_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'right-sided', p_value_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'approximate', p_value_iterations: int [https://docs.python.org/3/library/functions.html#int] = 10000, p_value_verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Calculate the WEAT metric over the provided parameters.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute sets to be tested.



	modelWordEmbeddingModel
	A word embedding model.



	return_effect_sizebool, optional
	Specifies if the returned score in ‘result’ field of results dict
is by default WEAT effect size metric, by default False



	calculate_p_valuebool, optional
	Specifies whether the p-value will be calculated through a permutation test.
Warning: This can increase the computing time quite a lot, by default False.



	p_value_test_type{‘left-sided’, ‘right-sided’, ‘two-sided}, optional
	When calculating the p-value, specify the type of test to be performed.
The options are ‘left-sided’, ‘right-sided’ and ‘two-sided
, by default ‘right-sided’



	p_value_method{‘exact’, ‘approximate’}, optional
	When calculating the p-value, specify the method for calculating the
p-value. This can be ‘exact ‘and ‘approximate’.
by default ‘approximate’.



	p_value_iterationsint, optional
	If the p-value is calculated and the chosen method is ‘approximate’,
it specifies the number of iterations that will be performed
, by default 10000.



	p_value_verbosebool, optional
	In case of calculating the p-value, specify if notification messages
will be logged during its calculation., by default False.



	lost_vocabulary_thresholdfloat, optional
	Specifies the proportional limit of words that any set of the query is
allowed to lose when transforming its words into embeddings.
In the case that any set of the query loses proportionally more words
than this limit, the result values will be np.nan, by default 0.2



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name, the resulting score of the metric,
and the scores of WEAT and the effect size of the metric.









Examples

The following example shows how to run a query that measures gender
bias using WEAT:

>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>> from wefe.metrics import WEAT
>>>
>>> # define the query
>>> query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...          "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         ["home", "parents", "children", "family", "cousins", "marriage",
...          "wedding", "relatives",
...         ],
...         ["executive", "management", "professional", "corporation", "salary",
...          "office", "business", "career",
...         ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family", "Career"],
... )
>>>
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>>
>>> # instance the metric and run the query
>>> WEAT().run_query(query, model) 
{'query_name': 'Female terms and Male Terms wrt Family and Career',
'result': 0.4634388245467562,
'weat': 0.4634388245467562,
'effect_size': 0.45076532408312986,
'p_value': nan}
>>>
>>>





If you want to return the effect size as result value, use
return_effect_size parameter as True while running the query.

>>> WEAT().run_query(query, model, return_effect_size=True) 
{'query_name': 'Female terms and Male Terms wrt Family and Career',
'result': 0.45076532408312986,
'weat': 0.4634388245467562,
'effect_size': 0.45076532408312986,
'p_value': nan}





If you want the embeddings to be normalized before calculating the metrics
use the normalize parameter as True before executing the query.

>>> WEAT().run_query(query, model, normalize=True) 
{'query_name': 'Female terms and Male Terms wrt Family and Career',
'result': 0.4634388248814503,
'weat': 0.4634388248814503,
'effect_size': 0.4507653062895615,
'p_value': nan}





Using the calculate_p_value parameter as True you can indicate WEAT to run
the permutation test and return its p-value. The argument
p_value_method=’approximate’ indicates that the calculation of the
permutation test will be approximate, i.e., not all possible permutations
will be generated.  Instead, random permutations of the attributes to test 
will be generated.
On the other hand, the argument p_value_iterations
indicates the number of permutations that will be generated and tested.

>>> WEAT().run_query(
...     query,
...     model,
...     calculate_p_value=True,
...     p_value_method="approximate",
...     p_value_iterations=10000,
... )  
{
    'query_name': 'Female terms and Male Terms wrt Family and Career',
    'result': 0.46343879750929773,
    'weat': 0.46343879750929773,
    'effect_size': 0.4507652708557911,
    'p_value': 0.1865813418658134
}
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class wefe.RND

	Relative Norm Distance (RND).

It measures the relative strength of association of a set of neutral words
with respect to two groups.

References


[1]: Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou.

Word embeddings quantify 100 years of gender and ethnic stereotypes.

Proceedings of the National Academy of Sciences, 115(16):E3635–E3644,2018.

[2]: https://github.com/nikhgarg/EmbeddingDynamicStereotypes




	
__init__(*args, **kwargs)

	




	
run_query(query: Query, model: WordEmbeddingModel, distance: str [https://docs.python.org/3/library/stdtypes.html#str] = 'norm', lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Calculate the RND metric over the provided parameters.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute sets to be tested.



	modelWordEmbeddingModel
	A word embedding model.



	distancestr, optional
	Specifies which type of distance will be calculated. It could be:
{norm, cos} , by default ‘norm’.



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name, the resulting score of the metric,
and a dictionary with the distances of each attribute word
with respect to the target sets means.









Examples

The following example shows how to run a query that measures gender
bias using RND:

>>> from wefe.metrics import RND
>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>>
>>> # define the query
>>> query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...          "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         [
...             "home", "parents", "children", "family", "cousins", "marriage",
...             "wedding", "relatives",
...         ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family"],
... )
>>>
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>>
>>> # instance the metric and run the query
>>> RND().run_query(query, model) 
{'query_name': 'Female terms and Male Terms wrt Family',
 'result': 0.030381828546524048,
 'rnd': 0.030381828546524048,
 'distances_by_word': {'wedding': -0.1056304,
                       'marriage': -0.10163283,
                       'children': -0.068374634,
                       'parents': 0.00097084045,
                       'relatives': 0.0483346,
                       'family': 0.12408042,
                       'cousins': 0.17195654,
                       'home': 0.1733501}}
>>>





If you want the embeddings to be normalized before calculating the metrics
use the normalize parameter as True before executing the query.

>>> RND().run_query(query, model, normalize=True) 
{'query_name': 'Female terms and Male Terms wrt Family',
 'result': -0.006278775632381439,
 'rnd': -0.006278775632381439,
 'distances_by_word': {'children': -0.05244279,
                       'wedding': -0.04642248,
                       'marriage': -0.04268837,
                       'parents': -0.022358716,
                       'relatives': 0.005497098,
                       'family': 0.023389697,
                       'home': 0.04009247,
                       'cousins': 0.044702888}}





If you want to use cosine distance instead of euclidean norm
use the distance parameter as ‘cos’ before executing the query.

>>> RND().run_query(query, model, normalize=True, distance='cos') 
{'query_name': 'Female terms and Male Terms wrt Family',
 'result': 0.03643466345965862,
 'rnd': 0.03643466345965862,
 'distances_by_word': {'cousins': -0.035989374,
                       'home': -0.026971221,
                       'family': -0.009296179,
                       'relatives': 0.015690982,
                       'parents': 0.051281124,
                       'children': 0.09255883,
                       'marriage': 0.09959312,
                       'wedding': 0.104610026}}
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class wefe.RNSB

	Relative Relative Negative Sentiment Bias (RNSB).

The metric was originally proposed in [1].
Visit RNSB in Metrics Section [https://wefe.readthedocs.io/en/latest/about.html#rnsb]
for further information.

References


[1]: Chris Sweeney and Maryam Najafian. A transparent framework for evaluating


unintended demographic bias in word embeddings.

In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 1662–1667, 2019.



[2]: https://github.com/ChristopherSweeney/AIFairness/blob/master/python_notebooks/Measuring_and_Mitigating_Word_Embedding_Bias.ipynb




	
__init__(*args, **kwargs)

	




	
run_query(query: ~wefe.query.Query, model: ~wefe.word_embedding_model.WordEmbeddingModel, estimator: ~sklearn.base.BaseEstimator = <class 'sklearn.linear_model._logistic.LogisticRegression'>, estimator_params: ~typing.Dict[str, ~typing.Any] = {'max_iter': 10000, 'solver': 'liblinear'}, n_iterations: int = 1, random_state: ~typing.Optional[int] = None, holdout: bool = True, print_model_evaluation: bool = False, lost_vocabulary_threshold: float = 0.2, preprocessors: ~typing.List[~typing.Dict[str, ~typing.Union[str, bool, ~typing.Callable]]] = [{}], strategy: str = 'first', normalize: bool = False, warn_not_found_words: bool = False, *args: ~typing.Any, **kwargs: ~typing.Any) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Calculate the RNSB metric over the provided parameters.

Note if you want to use with Bing Liu dataset, you have to pass
the positive and negative words in the first and second place of
attribute set array respectively.
Scores on this metric vary with each run due to different instances
of classifier training. For this reason, the robustness of these scores
can be improved by repeating the test several times and returning the
average of the scores obtained. This can be indicated in the
n_iterations parameter.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute word sets to
be tested.



	modelWordEmbeddingModel
	A word embedding model.



	estimatorBaseEstimator, optional
	A scikit-learn classifier class that implements predict_proba function,
by default None,



	estimator_paramsdict, optional
	Parameters that will use the classifier, by default { ‘solver’: ‘liblinear’,
‘max_iter’: 10000, }



	n_iterationsint, optional
	When provided, it tells the metric to run the specified number of times
and then average its results. This functionality is indicated to
strengthen the results obtained, by default 1.



	random_stateUnion[int, None], optional
	Seed that allow making the execution of the query reproducible.
Warning: if a random_state other than None is provided along with
n_iterations, each iteration will split the dataset and train a
classifier associated to the same seed, so the results of each iteration
will always be the same , by default None.



	holdout: bool, optional
	True indicates that a holdout (split attributes in train/test sets) will
be executed before running the model training.
This option allows to evaluate the performance of the classifier
(can be printed using print_model_evaluation=True) at the cost of training
the classifier with fewer examples. False disables this functionality.
Note that holdout divides into 80%train and 20% test, performs a shuffle
and tries to maintain the original ratio of the classes via stratify param.
by default True



	print_model_evaluationbool, optional
	Indicates whether the classifier evaluation is printed after the
training process is completed, by default False



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name, the calculated kl-divergence,
the negative probabilities for all tested target words and
the normalized distribution of probabilities.









Examples

The following example shows how to run a query that measures gender
bias using RNSB:

>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>> from wefe.metrics import RNSB
>>>
>>> # define the query
>>> query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...          "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         ["home", "parents", "children", "family", "cousins", "marriage",
...          "wedding", "relatives",],
...         ["executive", "management", "professional", "corporation", "salary",
...          "office", "business", "career", ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family", "Careers"],
... )
>>>
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>>
>>> # instance the metric and run the query
>>> RNSB().run_query(query, model) 
{
    'query_name': 'Female terms and Male Terms wrt Family and Careers',
    'result': 0.02899395368025491,
    'rnsb': 0.02899395368025491,
    'negative_sentiment_probabilities': {
        'female': 0.43272977959940667,
        'woman': 0.6951544646603257,
        'girl': 0.8141335128074891,
        'sister': 0.8472896023561901,
        'she': 0.5718048693637721,
        'her': 0.5977365245684795,
        'hers': 0.6939932357393684,
        'daughter': 0.8887895021296551,
        'male': 0.5511334216620132,
        'man': 0.584603563015763,
        'boy': 0.8129431089763982,
        'brother': 0.8331301278277582,
        'he': 0.4420145415672582,
        'him': 0.5139776652415698,
        'his': 0.44459083129125154,
        'son': 0.8483699001061482
    },
    'negative_sentiment_distribution': {
        'female': 0.04093015763103808,
        'woman': 0.06575184597373163,
        'girl': 0.07700559236475293,
        'sister': 0.08014169261861909,
        'she': 0.05408470722518866,
        'her': 0.05653747748783378,
        'hers': 0.0656420100321782,
        'daughter': 0.0840670000956609,
        'male': 0.052129478690471215,
        'man': 0.055295283832909777,
        'boy': 0.07689299688658582,
        'brother': 0.07880240525790659,
        'he': 0.04180836566946482,
        'him': 0.04861506614276754,
        'his': 0.04205204648247447,
        'son': 0.0802438736084164
    }
}





If you want to perform a holdout to evaluate (defualt option) the model
and print the evaluation, use the params holdout=True and
print_model_evaluation=True

>>> RNSB().run_query(
...     query,
...     model,
...     holdout=True,
...     print_model_evaluation=True) 
"Classification Report:"
"              precision    recall  f1-score   support"
"                                                     "
"        -1.0       1.00      1.00      1.00         2"
"         1.0       1.00      1.00      1.00         2"
"                                                     "
"    accuracy                           1.00         4"
"   macro avg       1.00      1.00      1.00         4"
"weighted avg       1.00      1.00      1.00         4"
{
    'query_name': 'Female terms and Male Terms wrt Family and Careers',
    'result': 0.028622532697549753,
    'rnsb': 0.028622532697549753,
    'negative_sentiment_probabilities': {
        'female': 0.4253580834091863,
        'woman': 0.7001106999668327,
        'girl': 0.8332271657179001,
        'sister': 0.8396986674252397,
        'she': 0.603565156083575,
        'her': 0.6155296658190583,
        'hers': 0.7147102319731146,
        'daughter': 0.884829695542309,
        'male': 0.5368167185683463,
        'man': 0.5884385611055519,
        'boy': 0.8132056992854114,
        'brother': 0.8270792128939456,
        'he': 0.4500708786239489,
        'him': 0.49965355723589994,
        'his': 0.45394634194580535,
        'son': 0.8450690196299462
    },
    'negative_sentiment_distribution': {
        'female': 0.04000994319670431,
        'woman': 0.0658536664275202,
        'girl': 0.07837483962483958,
        'sister': 0.07898356066672689,
        'she': 0.05677241964432896,
        'her': 0.057897822860029945,
        'hers': 0.06722692455767754,
        'daughter': 0.08322866600691568,
        'male': 0.05049394205657851,
        'man': 0.055349585027011844,
        'boy': 0.07649158463116877,
        'brother': 0.07779655217044128,
        'he': 0.04233447297841125,
        'him': 0.04699830853762932,
        'his': 0.04269900599992016,
        'son': 0.07948870561409564
        }
    }





If you want to disable the holdout, use the param holdout=False.

>>> # instance the metric and run the query
>>> RNSB().run_query(
...     query,
...     model,
...     holdout=False,
...     print_model_evaluation=True) 
"Holdout is disabled. No evaluation was performed."
{
    'query_name': 'Female terms and Male Terms wrt Family and Careers',
    'result': 0.03171747070323668,
    'rnsb': 0.03171747070323668,
    'negative_sentiment_probabilities': {
        'female': 0.41846552820545985,
        'woman': 0.7104860753714863,
        'girl': 0.8325507470146775,
        'sister': 0.8634309153859019,
        'she': 0.593223646607777,
        'her': 0.6138756234516175,
        'hers': 0.7205687956033292,
        'daughter': 0.8964129106245865,
        'male': 0.545075356696542,
        'man': 0.5856674025396198,
        'boy': 0.8184955986780176,
        'brother': 0.8392921127806534,
        'he': 0.43437306199747594,
        'him': 0.4974336520424158,
        'his': 0.4342254305877148,
        'son': 0.851969666735826
    },
    'negative_sentiment_distribution': {
        'female': 0.03927208494188834,
        'woman': 0.0666775818349327,
        'girl': 0.07813308731881921,
        'sister': 0.0810311243458957,
        'she': 0.055672756461026464,
        'her': 0.05761089983046311,
        'hers': 0.06762382332604978,
        'daughter': 0.08412641327954143,
        'male': 0.05115414356760721,
        'man': 0.05496361929467757,
        'boy': 0.07681404203995185,
        'brother': 0.07876574991858241,
        'he': 0.04076497259018534,
        'him': 0.04668307260513937,
        'his': 0.04075111770161401,
        'son': 0.07995551094362546
    }
}
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class wefe.MAC

	Mean Average Cosine Similarity (MAC).

The general steps of the test are as follows [1].


	Embed all target and attribute words.


	For each target set:



	For each word embedding in the target set:



	For each attribute set:



	Calculate the cosine similarity of the target embedding and




each attribute embedding of the set.


	Calculate the mean of the cosines similarities and save it in a array.























	Average all the mean cosine similarities and return the calculated score.




The closer the value is to 1, the less biased the query will be.

References


[1]: Thomas Manzini, Lim Yao Chong,Alan W Black, and Yulia Tsvetkov.
Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass
Bias in Word Embeddings.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 615–621,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[2]: https://github.com/TManzini/DebiasMulticlassWordEmbedding/blob/master/Debiasing/evalBias.py




	
__init__(*args, **kwargs)

	




	
run_query(query: Query, model: WordEmbeddingModel, lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Calculate the MAC metric over the provided parameters.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute word sets
for be tested.



	modelWordEmbeddingModel
	A word embedding model.



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name, the resulting score of the metric,
and a dictionary with the distances of each attribute word
with respect to the target sets means.









Examples

>>> from wefe.metrics import MAC
>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>>
>>> query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...          "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         ["home", "parents", "children", "family", "cousins", "marriage",
...          "wedding", "relatives",
...         ],
...         ["executive", "management", "professional", "corporation", "salary",
...          "office", "business", "career",
...         ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family", "Careers"],
... )
>>>
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>>
>>> # instance the metric and run the query
>>> MAC().run_query(query, model) 
{'query_name': 'Female terms and Male Terms wrt Family and Careers',
'result': 0.8416415235615204,
'mac': 0.8416415235615204,
'targets_eval': {'Female terms': {'female': {'Family': 0.9185737599618733,
    'Careers': 0.916069650076679},
    'woman': {'Family': 0.752434104681015, 'Careers': 0.9377805145923048},
    'girl': {'Family': 0.707457959651947, 'Careers': 0.9867974997032434},
    'sister': {'Family': 0.5973392464220524, 'Careers': 0.9482253392925486},
    'she': {'Family': 0.7872791914269328, 'Careers': 0.9161583095556125},
    'her': {'Family': 0.7883057091385126, 'Careers': 0.9237247597193345},
    'hers': {'Family': 0.7385367527604103, 'Careers': 0.9480051446007565},
    'daughter': {'Family': 0.5472579970955849, 'Careers': 0.9277344475267455}},
'Male Terms': {'male': {'Family': 0.8735092766582966,
    'Careers': 0.9468009045813233},
    'man': {'Family': 0.8249392118304968, 'Careers': 0.9350165261421353},
    'boy': {'Family': 0.7106057899072766, 'Careers': 0.9879048476286698},
    'brother': {'Family': 0.6280269809067249, 'Careers': 0.9477180293761194},
    'he': {'Family': 0.8693044614046812, 'Careers': 0.8771287016716087},
    'him': {'Family': 0.8230192996561527, 'Careers': 0.888683641096577},
    'his': {'Family': 0.8876195731572807, 'Careers': 0.8920885202242061},
    'son': {'Family': 0.5764635019004345, 'Careers': 0.9220191016211174}}}}
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class wefe.ECT

	Embedding Coherence Test [1].

The metric was originally proposed in [1] and implemented in [2].
Values closer to 1 are better as they represent less bias.

The general steps of the test, as defined in [1], are as follows:


	Embed all given target and attribute words with the given embedding model.


	Calculate mean vectors for the two sets of target word vectors.


	Measure the cosine similarity of the mean target vectors to all of the given
attribute words.


	Calculate the Spearman r correlation between the resulting two lists of
similarities.


	Return the correlation value as score of the metric (in the range of -1 to 1);
higher is better.




References


[1]: Dev, S., & Phillips, J. (2019, April). Attenuating Bias in Word vectors.

[2]: https://github.com/sunipa/Attenuating-Bias-in-Word-Vec




	
__init__(*args, **kwargs)

	




	
run_query(query: Query, model: WordEmbeddingModel, lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Run ECT with the given query with the given parameters.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute word sets to be
tested.



	modelWordEmbeddingModel
	A word embedding model.



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name and the result of the query.









Examples

>>> from wefe.metrics import ECT
>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>>
>>> # define the query
>>> query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...          "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         [
...             "home", "parents", "children", "family", "cousins", "marriage",
...             "wedding", "relatives",
...         ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family"],
... )
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>>
>>> # instance the metric and run the query
>>> ECT().run_query(query, model) 
{'query_name': 'Female terms and Male Terms wrt Family',
'result': 0.6190476190476191,
'ect': 0.6190476190476191}
>>> # if you want the embeddings to be normalized before calculating the metrics
>>> # use the normalize parameter as True before executing the query.
>>> ECT().run_query(query, model, normalize=True) 
{'query_name': 'Female terms and Male Terms wrt Family',
'result': 0.7619047619047621,
'ect': 0.7619047619047621}
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class wefe.RIPA

	An implementation of the Relational Inner Product Association Test, proposed by [1][2].

RIPA is most interpretable with a single pair of target words, although
this function returns the values for every attribute averaged across all base pairs.

NOTE: As the variance tends to be high depending on the base pair chosen, it is
recommended that only a single pair of target words is used as input to the
function.

This metric follows the following steps:


	The input is the word vectors for a pair of target word sets, and an attribute set.
Example: Target Set A (Masculine), Target Set B (Feminine), Attribute Set
(Career).


	Calculate the difference between the word vector of a pair of target set words.


	Calculate the dot product between this difference and the attribute word vector.


	Return the average RIPA score across all attribute words, and the average RIPA
score for each target pair for an attribute set.




References


[1]: Ethayarajh, K., & Duvenaud, D., & Hirst, G. (2019, July). Understanding Undesirable Word Embedding Associations.

[2]: https://kawine.github.io/assets/acl2019_bias_slides.pdf

[3]: https://kawine.github.io/blog/nlp/2019/09/23/bias.html




	
__init__(*args, **kwargs)

	




	
run_query(query: Query, model: WordEmbeddingModel, lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Calculate the Example Metric metric over the provided parameters.


	Parameters

	
	queryQuery
	A Query object that contains the target and attribute sets to be tested.



	modelWordEmbeddingModel
	A word embedding model.



	lost_vocabulary_thresholdfloat, optional
	Specifies the proportional limit of words that any set of the query is
allowed to lose when transforming its words into embeddings.
In the case that any set of the query loses proportionally more words
than this limit, the result values will be np.nan, by default 0.2



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	Specifies if the function will warn (in the logger)
the words that were not found in the model’s vocabulary, by default False.







	Returns

	
	Dict[str, Any]
	A dictionary with the query name, the resulting score of the metric,
and other scores.









Examples

>>> from wefe.metrics import RIPA
>>> from wefe.query import Query
>>> from wefe.utils import load_test_model
>>> 
>>> # define the query
... query = Query(
...     target_sets=[
...         ["female", "woman", "girl", "sister", "she", "her", "hers",
...         "daughter"],
...         ["male", "man", "boy", "brother", "he", "him", "his", "son"],
...     ],
...     attribute_sets=[
...         [
...             "home", "parents", "children", "family", "cousins", "marriage",
...             "wedding", "relatives",
...         ],
...     ],
...     target_sets_names=["Female terms", "Male Terms"],
...     attribute_sets_names=["Family"],
... )
>>>
>>> # load the model (in this case, the test model included in wefe)
>>> model = load_test_model()
>>> 
>>> # instance the metric and run the query
>>> RIPA().run_query(query, model) 
{
    'query_name': 'Female terms and Male Terms wrt Family',
    'result': 0.18600442,
    'ripa': 0.18600442,
    'word_values': {
        'home': {'mean': 0.008022693, 'std': 0.07485135},
        'parents': {'mean': 0.2038254, 'std': 0.30801567},
        'children': {'mean': 0.30370313, 'std': 0.2787335},
        'family': {'mean': 0.07277942, 'std': 0.20808344},
        'cousins': {'mean': -0.040398445, 'std': 0.27916202},
        'marriage': {'mean': 0.37971354, 'std': 0.31494072},
        'wedding': {'mean': 0.39682359, 'std': 0.28507116},
        'relatives': {'mean': 0.16356598, 'std': 0.21053126}
    }
}
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class wefe.HardDebias(pca_args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] = {'n_components': 10}, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, criterion_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Hard Debias debiasing method.

This method allow reducing the bias of an embedding model through geometric
operations between embeddings.
This method is binary because it only allows 2 classes of the same bias criterion,
such as male or female.
For a multiclass debias (such as for Latinos, Asians and Whites), it is recommended
to visit MulticlassHardDebias class.

The main idea of this method is:

1. Identify a bias subspace through the defining sets. In the case of gender,
these could be e.g. {‘woman’, ‘man’}, {‘she’, ‘he’}, …

2. Neutralize the bias subspace of embeddings that should not be biased.
First, it is defined a set of words that are correct to be related to the bias
criterion: the criterion specific gender words.
For example, in the case of gender, gender specific words are:
{‘he’, ‘his’, ‘He’, ‘her’, ‘she’, ‘him’, ‘him’, ‘She’, ‘man’, ‘women’, ‘men’…}.

Then, it is defined that all words outside this set should have no relation to the
bias criterion and thus have the possibility of being biased. (e.g. for the case of
gender: {doctor, nurse, …}). Therefore, this set of words is neutralized with
respect to the bias subspace found in the previous step.

The neutralization is carried out under the following operation:


	u : embedding


	v : bias direction




First calculate the projection of the embedding on the bias subspace.
- bias_subspace = v • (v • u) / (v • v)

Then subtract the projection from the embedding.
- u’ = u - bias_subspace

3. Equalizate the embeddings with respect to the bias direction..
Given an equalization set (set of word pairs such as [she, he], [men, women], …,
but not limited to the definitional set) this step executes, for each pair,
an equalization with respect to the bias direction.
That is, it takes both embeddings of the pair and distributes them at the same
distance from the bias direction, such that neither is closer to the bias direction
than the other.

References


[1]: Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016).

Man is to computer programmer as woman is to homemaker? debiasing word embeddings.

Advances in Neural Information Processing Systems.

[2]: https://github.com/tolga-b/debiaswe




	
__init__(pca_args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] = {'n_components': 10}, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, criterion_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a Hard Debias instance.


	Parameters

	
	pca_argsDict[str, Any], optional
	Arguments for the PCA that is calculated internally in the identification
of the bias subspace, by default {“n_components”: 10}



	verbosebool, optional
	True will print informative messages about the debiasing process,
by default False.



	criterion_nameOptional[str], optional
	The name of the criterion for which the debias is being executed,
e.g., ‘Gender’. This will indicate the name of the model returning transform,
by default None














	
fit(model: WordEmbeddingModel, definitional_pairs: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]], equalize_pairs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, **fit_params) → BaseDebias

	Compute the bias direction and obtains the equalize embedding pairs.


	Parameters

	
	modelWordEmbeddingModel
	The word embedding model to debias.



	definitional_pairsSequence[Sequence[str]]
	A sequence of string pairs that will be used to define the bias direction.
For example, for the case of gender debias, this list could be [[‘woman’,
‘man’], [‘girl’, ‘boy’], [‘she’, ‘he’], [‘mother’, ‘father’], …].



	equalize_pairsOptional[Sequence[Sequence[str]]], optional
	A list with pairs of strings, which will be equalized.
In the case of passing None, the equalization will be done over the word
pairs passed in definitional_pairs,
by default None.







	Returns

	
	BaseDebias
	The debias method fitted.














	
transform(model: WordEmbeddingModel, target: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, ignore: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → WordEmbeddingModel

	Execute hard debias over the provided model.


	Parameters

	
	modelWordEmbeddingModel
	The word embedding model to debias.



	targetOptional[List[str]], optional
	If a set of words is specified in target, the debias method will be performed
only on the word embeddings of this set. If None is provided, the
debias will be performed on all words (except those specified in ignore).
by default None.



	ignoreOptional[List[str]], optional
	If target is None and a set of words is specified in ignore, the debias
method will perform the debias in all words except those specified in this
set, by default None.



	copybool, optional
	If True, the debias will be performed on a copy of the model.
If False, the debias will be applied on the same model delivered, causing
its vectors to mutate.
WARNING: Setting copy with True requires RAM at least 2x of the size
of the model, otherwise the execution of the debias may raise to
MemoryError, by default True.







	Returns

	
	WordEmbeddingModel
	The debiased embedding model.
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wefe.MulticlassHardDebias


	
class wefe.MulticlassHardDebias(pca_args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] = {'n_components': 10}, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, criterion_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Generalized version of Hard Debias that enables multiclass debiasing.

Generalized refers to the fact that this method extends Hard Debias in order to
support more than two types of social target sets within the definitional set.
For example, for the case of religion bias, it supports a debias using words
associated with Christianity, Islam and Judaism.

References


[1]: Manzini, T., Chong, L. Y., Black, A. W., & Tsvetkov, Y. (2019, June).

Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass

Bias in Word Embeddings.

In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers) (pp. 615-621).

[2]: https://github.com/TManzini/DebiasMulticlassWordEmbedding




	
__init__(pca_args: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] = {'n_components': 10}, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False, criterion_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a Multiclass Hard Debias instance.


	Parameters

	
	pca_argsDict[str, Any], optional
	Arguments for the PCA that is calculated internally in the identification
of the bias subspace, by default {“n_components”: 10}



	verbosebool, optional
	True will print informative messages about the debiasing process,
by default False.



	criterion_nameOptional[str], optional
	The name of the criterion for which the debias is being executed,
e.g. ‘Gender’. This will indicate the name of the model returning transform,
by default None














	
fit(model: WordEmbeddingModel, definitional_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]], equalize_sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → BaseDebias

	Compute the bias direction and obtains the equalize embedding pairs.


	Parameters

	
	modelWordEmbeddingModel
	The word embedding model to debias.



	definitional_setsSequence[Sequence[str]]
	A sequence of string pairs that will be used to define the bias direction.
For example, for the case of gender debias, this list could be [[‘woman’,
‘man’], [‘girl’, ‘boy’], [‘she’, ‘he’], [‘mother’, ‘father’], …].



	equalize_pairsOptional[Sequence[Sequence[str]]], optional
	A list with pairs of strings, which will be equalized.
In the case of passing None, the equalization will be done over the word
pairs passed in definitional_sets,
by default None.







	Returns

	
	BaseDebias
	The debias method fitted.














	
transform(model: WordEmbeddingModel, target: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, ignore: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → WordEmbeddingModel

	Execute Multiclass Hard Debias over the provided model.


	Parameters

	
	modelWordEmbeddingModel
	The word embedding model to debias.



	targetOptional[List[str]], optional
	If a set of words is specified in target, the debias method will be performed
only on the word embeddings of this set. If None is provided, the
debias will be performed on all words (except those specified in ignore).
by default None.



	ignoreOptional[List[str]], optional
	If target is None and a set of words is specified in ignore, the debias
method will perform the debias in all words except those specified in this
set, by default None.



	copybool, optional
	If True, the debias will be performed on a copy of the model.
If False, the debias will be applied on the same model delivered, causing
its vectors to mutate.
WARNING: Setting copy with True requires RAM at least 2x of the size
of the model, otherwise the execution of the debias may raise to
MemoryError, by default True.







	Returns

	
	WordEmbeddingModel
	The debiased embedding model.
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wefe.load_bingliu() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Load the Bing-Liu sentiment lexicon.


	Returns

	
	dict
	A dictionary with the positive and negative words.









References

Minqing Hu and Bing Liu. “Mining and Summarizing Customer Reviews.”
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2004), Aug 22-25, 2004, Seattle,
Washington, USA.
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wefe.fetch_debias_multiclass


	
wefe.fetch_debias_multiclass() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], list [https://docs.python.org/3/library/stdtypes.html#list]]]

	Fetch the word sets used in the paper Black Is To Criminals as Caucasian
Is To Police: Detecting And Removing Multiclass Bias In Word Embeddings.

This dataset contains gender (male, female), ethnicity (asian, black, white) and
religion (christianity, judaism and islam) word sets.
This helper allow accessing independently to each of the word sets (to be used
as target or attribute sets in metrics) as well as to access them in the original
format (to be used in debiasing methods).
The dictionary keys whose names contain definitional sets and analogies
templates are the keys that point to the original format focused on debiasing.


	Returns

	
	dict
	A dictionary in which each key correspond to the name of the set and
its values correspond to the word set.









References


[1]: Thomas Manzini, Lim Yao Chong,Alan W Black, and Yulia Tsvetkov.

Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass

Bias in Word Embeddings.

In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pages 615–621,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[2]: https://github.com/TManzini/DebiasMulticlassWordEmbedding/blob/master/Debiasing/evalBias.py
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wefe.fetch_debiaswe


	
wefe.fetch_debiaswe() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], list [https://docs.python.org/3/library/stdtypes.html#list]]]

	Fetch the word sets used in the paper Man is to Computer Programmer as
Woman is to Homemaker? from the source. It includes gender (male, female)
terms and related word sets.


	Returns

	
	dict
	A dictionary in which each key correspond to the name of the set and
its values correspond to the word set.









References

Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings by Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai.
Proceedings of NIPS 2016.
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wefe.fetch_eds


	
wefe.fetch_eds(occupations_year: int [https://docs.python.org/3/library/functions.html#int] = 2015, top_n_race_occupations: int [https://docs.python.org/3/library/functions.html#int] = 10) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Fetch the word sets used in the experiments of the work Word Embeddings
*Quantify 100 Years Of Gender And Ethnic Stereotypes.

This dataset includes gender (male, female), ethnicity (asian, black, white) and
religion (christianity and islam) and adjetives (appearence, intelligence,
otherization, sensitive) word sets.


	Parameters

	
	occupations_yearint, optional
	The year of the census for the occupations file.
Available years: {‘1850’, ‘1860’, ‘1870’, ‘1880’, ‘1900’, ‘1910’,
‘1920’, ‘1930’, ‘1940’, ‘1950’, ‘1960’, ‘1970’, ‘1980’, ‘1990’,
‘2000’, ‘2001’, ‘2002’, ‘2003’, ‘2004’, ‘2005’, ‘2006’, ‘2007’,
‘2008’, ‘2009’, ‘2010’, ‘2011’, ‘2012’, ‘2013’, ‘2014’, ‘2015’}
, by default 2015



	top_n_race_occupationsint, optional
	The year of the census for the occupations file.
The number of occupations by race, by default 10







	Returns

	
	dict
	A dictionary with the word sets.









References

Word Embeddings quantify 100 years of gender and ethnic stereotypes.
Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Proceedings of
the National Academy of Sciences, 115(16), E3635-E3644.
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wefe.load_weat


	
wefe.load_weat() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Load the word sets used in the paper Semantics Derived Automatically
From Language Corpora Contain Human-Like Biases.
It includes gender (male, female), ethnicity (black, white)
and pleasant, unpleasant word sets, among others.


	Returns

	
	word_sets_dictdict
	A dictionary with the word sets.









References

Semantics derived automatically from language corpora contain human-like
biases.
Caliskan, A., Bryson, J. J., & Narayanan, A. (2017).
Science, 356(6334), 183-186.
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wefe.preprocess_word


	
wefe.preprocess_word(word: str [https://docs.python.org/3/library/stdtypes.html#str], options: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = {}, vocab_prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	pre-processes a word before it is searched in the model’s vocabulary.


	Parameters

	
	wordstr
	Word to be preprocessed.



	optionsDict[str, Union[str, bool, Callable]], optional
	Dictionary with arguments that specifies how the words will be preprocessed,
The available word preprocessing options are as follows:


	`lowercase`: bool. Indicates if the words are transformed to lowercase.


	`uppercase`: bool. Indicates if the words are transformed to uppercase.


	`titlecase`: bool. Indicates if the words are transformed to titlecase.


	`strip_accents`: bool, {‘ascii’, ‘unicode’}: Specifies if the accents of
the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	`preprocessor`: Callable. It receives a function that operates on each
word. In the case of specifying a function, it overrides
the default preprocessor (i.e., the previous options
stop working).




By default, no preprocessing is generated, which is equivalent to {}







	Returns

	
	str
	The pre-processed word according to the given parameters.
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wefe.get_embeddings_from_set


	
wefe.get_embeddings_from_set(model: WordEmbeddingModel, word_set: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Transform a sequence of words into dictionary that maps word - word embedding.

The method discard out words that are not in the model’s vocabulary
(according to the rules specified in the preprocessors).


	Parameters

	
	modelWordEmbeddingModel
	A word embeddding model



	word_setSequence[str]
	A sequence with the words that this function will convert to embeddings.



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.
by default [{}]



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	verbosebool, optional
	Indicates whether the execution status of this function is printed,
by default False







	Returns

	
	Tuple[List[str], Dict[str, np.ndarray]]
	A tuple containing the words that could not be found and a dictionary with
the found words and their corresponding embeddings.
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wefe.get_embeddings_from_sets


	
wefe.get_embeddings_from_sets(model: WordEmbeddingModel, sets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]], sets_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, discard_incomplete_sets: bool [https://docs.python.org/3/library/functions.html#bool] = True, warn_lost_sets: bool [https://docs.python.org/3/library/functions.html#bool] = True, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Given a sequence of word sets, obtain their corresponding embeddings.


	Parameters

	
	model
	

	setsSequence[Sequence[str]]
	A sequence containing word sets.
Example: [[‘woman’, ‘man’], [‘she’, ‘he’], [‘mother’, ‘father’] …].



	sets_nameUnion[str, optional]
	The name of the set of word sets. Example: definning sets.
This parameter is used only for printing.
by default None



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.
by default [{}]



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	discard_incomplete_setsbool, optional
	True indicates that if a set could not be completely converted, it will be
discarded., by default True



	warn_lost_setsbool, optional
	Indicates whether word sets that cannot be fully converted to embeddings
are warned in the logger,
by default True



	verbosebool, optional
	Indicates whether the execution status of this function is printed,
by default False







	Returns

	
	List[EmbeddingDict]
	A list of dictionaries. Each dictionary contains as keys a pair of words
and as values their associated embeddings.
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wefe.get_embeddings_from_query


	
wefe.get_embeddings_from_query(model: WordEmbeddingModel, query: Query, lost_vocabulary_threshold: float [https://docs.python.org/3/library/functions.html#float] = 0.2, preprocessors: List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]]] = [{}], strategy: str [https://docs.python.org/3/library/stdtypes.html#str] = 'first', normalize: bool [https://docs.python.org/3/library/functions.html#bool] = False, warn_not_found_words: bool [https://docs.python.org/3/library/functions.html#bool] = False, verbose: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]]]

	Obtain the word vectors associated with the provided Query.

The words that does not appears in the word embedding pretrained model
vocabulary under the specified pre-processing are discarded.
If the remaining words percentage in any query set is lower than the specified
threshold, the function will return None.


	Parameters

	
	queryQuery
	The query to be processed.



	lost_vocabulary_thresholdfloat, optional, by default 0.2
	Indicates the proportional limit of words that any set of the query is
allowed to lose when transforming its words into embeddings.
In the case that any set of the query loses proportionally more words
than this limit, this method will return None.



	preprocessorsList[Dict[str, Union[str, bool, Callable]]]
	A list with preprocessor options.

A preprocessor is a dictionary that specifies what processing(s) are
performed on each word before it is looked up in the model vocabulary.
For example, the preprocessor
{'lowecase': True, 'strip_accents': True} allows you to lowercase
and remove the accent from each word before searching for them in the
model vocabulary. Note that an empty dictionary {} indicates that no
preprocessing is done.

The possible options for a preprocessor are:


	lowercase: bool. Indicates that the words are transformed to
lowercase.


	uppercase: bool. Indicates that the words are transformed to
uppercase.


	titlecase: bool. Indicates that the words are transformed to
titlecase.


	strip_accents: bool, {'ascii', 'unicode'}: Specifies that
the accents of the words are eliminated. The stripping type can be
specified. True uses ‘unicode’ by default.


	preprocessor: Callable. It receives a function that operates
on each word. In the case of specifying a function, it overrides the
default preprocessor (i.e., the previous options stop working).




A list of preprocessor options allows you to search for several
variants of the words into the model. For example, the preprocessors
[{}, {"lowercase": True, "strip_accents": True}]
{} allows first to search for the original words in the vocabulary of
the model. In case some of them are not found,
{"lowercase": True, "strip_accents": True} is executed on these words
and then they are searched in the model vocabulary.
by default [{}]



	strategystr, optional
	The strategy indicates how it will use the preprocessed words: ‘first’ will
include only the first transformed word found. all’ will include all
transformed words found, by default “first”.



	normalizebool, optional
	True indicates that embeddings will be normalized, by default False



	warn_not_found_wordsbool, optional
	A flag that indicates if the function will warn (in the logger)
the words that were not found in the model’s vocabulary,
by default False.



	verbosebool, optional
	Indicates whether the execution status of this function is printed,
by default False







	Returns

	
	Union[Tuple[EmbeddingSets, EmbeddingSets], None]
	A tuple of dictionaries containing the targets and attribute sets or None
in case there is a set that has proportionally less embeddings than it was
allowed to lose.
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WEFE Case Study Replication

The following code replicates the case study presented in our paper:

P. Badilla, F. Bravo-Marquez, and J. Pérez
WEFE: The Word Embeddings Fairness Evaluation Framework In Proceedings of the
29th International Joint Conference on Artificial Intelligence and the 17th
Pacific Rim International Conference on Artificial Intelligence (IJCAI-PRICAI 2020), Yokohama, Japan.

In this study we evaluate:


	Multiple queries grouped according to different criteria (gender, ethnicity, religion)


	Multiple embeddings (word2vec-google-news, glove-wikipedia,
glove-twitter, conceptnet, lexvec,
fasttext-wiki-news)


	Multiple metrics (WEAT and its variant, WEAT effect size,
RND, RNSB).




After grouping the results by each criterion and metric, the rankings of the
bias scores of each embedding model are calculated and plotted.
An overall ranking is also computed, which is simply the sum of all rankings
by model and metric.

Finally, the matrix of correlations between these rankings is calculated and
plotted.

The code for this experiment is relatively long to run.
A Jupyter Notebook with the code is provided in the
following link [https://github.com/dccuchile/wefe/blob/master/examples/WEFE_rankings.ipynb].
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Replication of Previous Studies

All replications of other studies that WEFE has currently implemented are in the Examples folder.

Below we list some examples:


WEAT Replication

The following notebook [https://github.com/dccuchile/wefe/blob/master/examples/WEAT_experiments.ipynb] reproduces the experiments performed in the following paper:


Semantics derived automatically from language corpora contain human-like biases.
Aylin Caliskan, Joanna J. Bryson, Arvind Narayanan





Note

Due to the formulation of the metric and the methods to transform the word to embeddings,
our results are not exactly the same as those reported in
the original paper. However, our results are still very similar to those
in the original paper.





RNSB Replication

The following notebook [https://github.com/dccuchile/wefe/blob/master/examples/RNSB_experiments.ipynb] replicates the experiments carried out in the following paper:


Chris Sweeney and Maryam Najafian.
A transparent framework for evaluating unintended demographic bias in word embeddings.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1662–1667, 2019.





Note

Due to the formulation of the metric (it trains a logistic regression in
each execution) our results are not exactly the same as those reported in
the original paper. However, our results are still very similar to those
in the original paper.



>>> from wefe.datasets import load_bingliu
>>> from wefe.metrics import RNSB
>>> from wefe.query import Query
>>> from wefe.word_embedding import
>>>
>>> import pandas as pd
>>> import plotly.express as px
>>> import gensim.downloader as api
>>>
>>> # load the target word sets.
>>> # In this case each word is an objective set because each of them represents a different social group.
>>> RNSB_words = [
>>>     ['swedish'], ['irish'], ['mexican'], ['chinese'], ['filipino'], ['german'], ['english'],
>>>     ['french'], ['norwegian'], ['american'], ['indian'], ['dutch'], ['russian'],
>>>     ['scottish'], ['italian']
>>> ]
>>>
>>> bing_liu = load_bingliu()
>>>
>>> # Create the query
>>> query = Query(RNSB_words,
>>>               [bing_liu['positive_words'], bing_liu['negative_words']])
>>>
>>> # Fetch the models
>>> glove = (api.load('glove-wiki-gigaword-300'),
>>>                            'glove-wiki-gigaword-300')
>>> # note that conceptnet uses a /c/en/ prefix before each word.
>>> conceptnet = (api.load('conceptnet-numberbatch-17-06-300'),
>>>                                 'conceptnet-numberbatch-17',
>>>                                 vocab_prefix='/c/en/')
>>>
>>> # Run the queries
>>> glove_results = RNSB().run_query(query, glove)
>>> conceptnet_results = RNSB().run_query(query, conceptnet)
>>>
>>>
>>> # Show the results obtained with glove
>>> glove_fig = px.bar(
>>>     pd.DataFrame(glove_results['negative_sentiment_distribution'],
>>>                  columns=['Word', 'Sentiment distribution']), x='Word',
>>>     y='Sentiment distribution', title='Glove negative sentiment distribution')
>>> glove_fig.update_yaxes(range=[0, 0.2])
>>> glove_fig.show()





[image: Glove RNSB sentiment distribution]
>>> # Show the results obtained with conceptnet
>>> conceptnet_fig = px.bar(
>>>     pd.DataFrame(conceptnet_results['negative_sentiment_distribution'],
>>>                  columns=['Word', 'Sentiment distribution']), x='Word',
>>>     y='Sentiment distribution',
>>>     title='Conceptnet negative sentiment distribution')
>>> conceptnet_fig.update_yaxes(range=[0, 0.2])
>>> conceptnet_fig.show()





[image: Conceptnet RNSB sentiment distribution]
>>> # Finally, we show the fair distribution of sentiments.
>>> fair_distribution = pd.DataFrame(
>>>     conceptnet_results['negative_sentiment_distribution'],
>>>     columns=['Word', 'Sentiment distribution'])
>>> fair_distribution['Sentiment distribution'] = np.ones(
>>>     fair_distribution.shape[0]) / fair_distribution.shape[0]
>>>
>>> fair_distribution_fig = px.bar(fair_distribution, x='Word',
>>>                                y='Sentiment distribution',
>>>                                title='Fair negative sentiment distribution')
>>> fair_distribution_fig.update_yaxes(range=[0, 0.2])
>>> fair_distribution_fig.show()





[image: Fair RNSB sentiment distribution]

Note

This code is not executed when compiling the documentation due to the long
processing time.
Instead, the tables and plots of these results were embedded.
The code is available for execution in the following notebook [https://github.com/dccuchile/wefe/blob/master/examples/RNSB_experiments.ipynb].
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